EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE - 2008/2009
SECOND SEMESTER (Jun./Sest, 2015)
EXTERNAL DEGREE
EXTMT 103 - VECTOR ALGEBRA \& CLASSICAL MECHANICS I
(REPEAT)
(a) For any three vectors $\underline{a}, \underline{b}, \underline{c}$, prove that

$$
\underline{a} \wedge(\underline{b} \wedge \underline{c})=(\underline{a} \cdot \underline{c}) \underline{b}-(\underline{a} \cdot \underline{b}) \underline{c} .
$$

(b) Let the vector \underline{x} be given by the equation $\lambda \underline{x}+\underline{x} \wedge \underline{a}=\underline{b}$, where $\underline{a}, \underline{b}$ are constant vectors and λ is a non-zero scalar. Show that \underline{x} satisfies the equation

$$
\lambda^{2}(\underline{x} \wedge \underline{a})+(\underline{a} \cdot \underline{b}) \underline{a}-\lambda|\underline{a}|^{2} \underline{x}+\lambda(\underline{a} \wedge \underline{b})=0 .
$$

Hence find \underline{x} in terms of $\underline{a}, \underline{b}$ and λ.
(c) Find the vector \underline{x} and the scalar λ which satisfy the equations

$$
\underline{a} \wedge \underline{x}=\underline{b}+\lambda \underline{a}, \quad \underline{a} \cdot \underline{x}=2,
$$

where $\underline{a}=\underline{i}+2 \underline{j}-\underline{k}$ and $\underline{b}=2 \underline{i}-\underline{j}+\underline{k}$.
2. (a) Define the following terms:
i. the gradient of a scalar field ϕ;
ii. the divergence of a vector field \underline{A};
iii. the curl of a vector field \underline{A}.

Prove that if ϕ is a scalar field and A is a vector field then

$$
\operatorname{curl}(\phi \underline{A})=\phi \operatorname{curl} \underline{A}+\operatorname{grad} \phi \wedge \underline{A} .
$$

(b) Let $\underline{r}=x \underline{i}+\underline{y} \underline{j}+z \underline{k}$ and $r=|\underline{r}|$. If \underline{a} is a constant vector, find

- $\operatorname{grad}(\underline{a} \cdot \underline{r})$;
- $\operatorname{curl}(\underline{a} \wedge \underline{r})$.

Hence show that
i. $\operatorname{grad}\left(\frac{\underline{a} \cdot \underline{r}}{r^{3}}\right)=\frac{\underline{a}}{r^{3}}-3 \frac{(\underline{a} \cdot \underline{r})}{r^{5}} \underline{r}$;
ii. $\operatorname{curl} \frac{(\underline{a} \wedge \underline{r})}{r^{3}}=\frac{2 \underline{a}}{r^{3}}+3 \frac{(\underline{a} \wedge \underline{r})}{r^{5}} \wedge \underline{r}$.
3. State the Stokes' theorem.
(a) Verify the Stokes' theorem for a vector $\underline{A}=(2 x-y) \underline{i}-y z^{2} \underline{j}-y^{2} z \underline{k}$, where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.
(b) Evaluate $\iiint_{V} \phi d V$, where $\phi=45 x^{2} y$ and V is the closed region bounded by the planes $4 x+2 y+z=8, x=0, y=0, z=0$.
4. A particle of mass m rests on a smooth horizontal table attached through a fixed point on the table by a light elastic string of modules $m g$ and y nstretched length ${ }^{\prime} a^{\prime}$. Initially the string is just taut and the particle is projected along the table in a direction perpendicular to the line of the string with velocity $\sqrt{\frac{4 a g}{3}}$. Prove that if r is the distance of the particle from the fixed point at time t then

$$
\frac{d^{2} \underline{r}}{d t^{2}}=\frac{4 g a^{3}}{3 r^{3}}-\frac{g(r-a)}{a}
$$

Prove also that the string will extend until its length is $2 a$ and that the velocity of the particle is then half of its initial velocity.
particle moves in a plane with the velocity v and the tangent to the path of the rticle makes an angle ψ with a fixed line in the plane. Prove that the components of celeration of the particle along the tangent and perpendicular to it are $\frac{d v}{d t}$ and $v \frac{d \psi}{d t}$ spectively.
body attached to a parachute is released from an aeroplane which is moving horontally with velocity v_{0}. The parachute exerts a drag opposing motion which is k mes the weight of the body, where $k \overline{\text { is a constant. Neglecting the air resistance to }}$ e motion of the body, prove that ii v is the velocity of the body when its path is aclined an angle ψ to the horizontal, then

$$
v=\frac{v_{0} \sec \psi}{(\sec \psi+\tan \psi)^{k}}
$$

rove that if $k=1$, the body cannot have a vertical component of velocity greater han $\frac{v_{0}}{2}$.
tate the angular momentum principle for motion of a particle.
right circular cone with a semi vertical angle α is fixed with its axis vertical and ertex downwards. A particle of mass m is held at the point A on the smooth inner urface of the cone at a distance ' a ' from the axis of revolution. The particle is rojected perpendicular to $O A$ with velocity ' u ', where O is the vertex of the cone. Show that the particle rises above the level of A if $u^{2}>a g \cot \alpha$ and greatest reaction oetween the particle and the surface is

$$
m g\left(\sin \alpha+\frac{u^{2}}{a g} \cos \alpha\right)
$$

