

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS FIRST EXAMINATION IN SCIENCE(2013/2014)

FIRST SEMESTER (Sept./Oct., 2015)

AM 106 - TENSOR CALCULUS

10 MAR 2016

Answer all question

Time: One hour

- (a) Define the following terms:
 - i. Covariant tensor;
 - ii. Contravariant tensor.
- (b) Let A_{rst}^{pq} be a tensor.
 - i. Choose p = t and show that A_{rsp}^{pq} , where the summation convention employed, is a tensor. What is its rank?
 - ii. Choose p = t, q = s and show similarly A_{rqp}^{pq} is a tensor. What is its rank?
- (c) The covariant components of a tensor in rectangular co-ordinate system are $x^2 y$, $2x z^2$, xyz. Find its covariant components in clyndrical co-ordinate system.
- (d) Let A_p , B_r^{qs} be an arbitrary tensors. Sow that if $A^p B_r^{qs} C(p, q, r, s, s)$ is an invariant then C(p, q, r, s) is a mixed tensor of rank four.

- 2. (a) Define the following:
 - i. Christofell's symbols of the first and second kind;
 - ii. Geodesic;
 - iii. Covariant derivative of a tensor A_p .
 - (b) With the usual notations, prove the following:

i.
$$[p q, r] = g_{rs}\Gamma^s_{p q};$$

ii. $[p m, q] + [q m, p] = \frac{\partial g_{p q}}{\partial x^m};$
iii. $\frac{\partial g^{p q}}{\partial x^m} + g^{p n}\Gamma^q_{m n} + g^{q n}\Gamma^p_{m n} = 0.$

(c) Prove that the covariant derivatives of g_{jk} , g^{jk} and δ_k^j are zero.