Eastern University, Sri Lanka

First Year First Semester Examination in Science
2011/2012 (January 2013)

CH 102 Introduction to Electrochemistry and Thermodynamies (Proper\& Repeat)

$$
\text { Gas constant }(\mathrm{R})=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \quad 2.303 \mathrm{RT} / \mathrm{F}=0.0591 \mathrm{~V}
$$

a) i. Write the mathematical expression for first law of thermodynamics
ii. A sample of 0.175 mol of an ideal gas is allowed to expand under adiabatic and reversible conditions from a volume of $5.0 \mathrm{dm}^{3}$ at a pressure of $303975 \mathrm{Nm}^{-2}$ and 298 K until the volume becomes $10.0 \mathrm{dm}^{3}$. Calculate the final pressure and final temperature of the gas and the values of $q, w, \Delta U$ and, ΔH.
b) i. Define 'Joule \cdots Thomson coefficient', and show that $\mu_{y-7}=-1 / C_{P}\left(\frac{\partial H}{\partial P}\right)_{\gamma}$
ii. The μ_{y-7} for CO_{2} gas at pressure up to 20 atm pressure can be taken as constant and equal to $1.054 \mathrm{~K} \mathrm{~atm}^{-1}$. Calculate the change in enthalpy (ΔH) when 5 moles of CO_{2} at $25^{\circ} \mathrm{C}$ and 1 atm pressure is compressed isothermally to 20 atm pressure. (The isobaric thermal heat capacity $\left(C_{p}\right)$ of CO_{2} is $36 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
2.
a) i. Derive the Maxwell relation $\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}$
ii. One mole of gas which obeys to the equation of state $P=\frac{R T}{V-b}-\frac{a}{T V^{2}}$ expands from V_{1} to V_{2}. Determine $\left(\frac{\partial P}{\partial T}\right)_{V}$ and hence show that $\Delta S=\operatorname{Rln}\left[\frac{V_{2}-b}{V_{1}-b}\right]+\frac{a}{T^{2}}\left[\frac{1}{V_{1}}-\frac{1}{V_{2}}\right]$
b) Consider the galvanic cell
$C u(s) / \mathrm{Cu}^{2+}(a q, 0.25 \mathrm{M}) / / \mathrm{Fe}^{3+}(a q, 0.0001 \mathrm{M}) / F e^{2+}(a q, 0.20 \mathrm{M})$.
i. Write the cell reaction
ii. Calculate the standard electrode potential and electrode potential of the cell.

$$
\text { Given that } E_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\theta}=0.34 \mathrm{~V} \text { and } E_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\theta}=0.77 \mathrm{~V}
$$

c) Calculate the change in standard free energy $\left(\Delta G^{\ominus}\right)$ at 298 K for the reaction

$$
\mathrm{Sn}(s)+\mathrm{Pb}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Sn}^{2+}(a q)-\mathrm{Pb}(s)
$$

Given that $E_{S n^{2+} / S n}^{\theta}=-0.14 \mathrm{~V}$ and $E_{P b^{2+} / P b}^{\theta}=-0.126 \mathrm{~V}$

