

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS FIRST EXAMINATION IN SCIENCE - 2011/2012

FIRST SEMESTER (Jan./Feb., 2014)

MT 106 - TENSOR CALCULUS

(Re-Repeat)

Answer all questions

Time: One hour

- 1. (a) Define the following terms:
 - i. covariant tensor,
 - ii. contravariant tensor.
 - (b) Write the transformation equation for the following tensors:
 - i. A_k^{pt} ,
 - ii. B_{tk}^{pqr} .
 - iii. D_{ptk}^m .
 - (c) Show that the contraction of the outer product of the tensors A^p and B_q is an invariant.
 - (d) The covariant components of a tensor of rank one in rectangular coordinate system are $2x-z,\ x^2y,\ yz$. Find its covariant components in spherical coordinate (r,θ,ϕ) .

- 2. (a) i. Define the Christoffel's symbols of the first and second kind.
 - ii. Determine the Christoffel's symbols of the second kind for the metric

$$ds^2 = a^2 d\theta^2 + a^2 \sin^2 \theta d\phi^2$$

where a is a constant, and find the corresponding differential equation for geodesic.

- (b) i. Write down the covariant derivative of the tensor A_{jk}^i .
 - ii. With the usual notation, prove that

$$\frac{\partial g_{pq}}{\partial x^m} = [pm, q] + [qm, p].$$

Hence deduce that the covariant derivative of a metric tensor g_{jk} is zero.

iii. Using the covariant derivative of a metric tensor, prove that

$$\Gamma_{ca}^e = \frac{1}{2} g^{eb} [\partial_c(g_{ab}) + \partial_a(g_{cb}) - \partial_b(g_{ca})], \text{ where } \partial_i = \frac{\partial}{\partial x^i}.$$