62

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS

FIRST YEAR EXAMINATION IN SCIENCE - 2012/2013

SECOND SEMESTER - (AUG./SEPT., 2015)

AM 104 - DIFFERENTIAL EQUATIONS

AND

FOURIER SERIES

(PROPER & REPEAT)

29 NCT 2015

Answer All Questions

Time Allowed: 3 Hours

Q1. (a) State the necessary and sufficient condition for the ordinary differential equation (ODE)

$$M(x,y) dx + N(x,y) dy = 0$$

to be exact.

[10 Marks]

Find the general solution of the following ODE

$$(x\sqrt{x^2 + y^2} - y) + (y\sqrt{x^2 + y^2} - x)\frac{dy}{dx} = 0.$$

[40 Marks]

(b) Find the general solution of the following ODE multiplying it by an appropriate integrating factor

$$(2xy + 4x^3)dx + (x^2 + x^2y + x^4)dy = 0.$$

[30 Marks]

(c) Solve the following nonlinear first-order Bernoulli's equation

$$x\frac{dy}{dx} + y - x^3y^6 = 0.$$

[20 Marks]

Q2. Let $D \equiv d/dx$ be a differential operator. Show that a particular integral of the ODE

$$(D - \alpha)(D - \beta)y = P(x),$$

where α, β are arbitrary real constants and P(x) is an arbitrary function in its variable, is given by

$$y = e^{\alpha x} \int e^{(\beta - \alpha)x} \left(\int Pe^{-\beta x} dx \right) dx.$$

[40 Marks]

Using the above result or otherwise, obtain the general solution of the following ODE:

- (i) $(D^2 + D 2)y = 2(1 + x x^2);$
- (ii) $(D^2 9D + 18)y = e^{e^{-3x}}$.

[60 Marks]

Q3. (a) Let $x = e^t$. Show that

$$x\frac{d}{dx} \equiv \mathcal{D}, \quad x^2 \frac{d^2}{dx^2} \equiv \mathcal{D}^2 - \mathcal{D},$$

and

$$x^3 \frac{d^3}{dx^3} \equiv \mathcal{D}(\mathcal{D} - 1)(\mathcal{D} - 2),$$

where $\mathcal{D} \equiv \frac{d}{dt}$.

[20 Marks]

Use the above results to find the general solution of the following Cauchy-Euler differential equation

$$(x^3D^3 + 2xD - 2)y = x^2 \ln x + 3x,$$

where $D \equiv \frac{d}{dx}$.

[40 Marks]

(b) Define what is meant by orthogonal trajectories of curves.

[10 Marks]

Find the orthogonal trajectories of the family of curves

$$r = a(1 + \sin \theta),$$

where a is a constant.

[30 Marks]

- Q4. (a) Define what is meant by the point, $x = x_0$, being
 - (i) an ordinary;
 - (ii) a singular;
 - (iii) a regular singular

point of the DE

$$y'' + p(x)y' + q(x)y = 0,$$

where the prime denotes differentiation with respect to x, and p(x) and q(x) are rational functions.

[30 Marks]

(b) (i) Find the regular singular point(s) of the DE

$$xy'' + (x+1)y' + 2y = 0. (1)$$

(ii) Use the method of Frobenius to find the general solution of the equation (1).

[70 Marks]

Q5. (a) Solve the following system of DEs:

(i)
$$\frac{dx}{1} = \frac{dy}{1} = \frac{dz}{(x+y)(1+2xy+3x^2y^2)}$$
;

(ii)
$$\frac{dx}{x} = \frac{dy}{x+z} = \frac{dz}{-z}.$$

[30 Marks]

(b) Write down the condition of integrability of the total differential equation

$$P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz = 0.$$

[5 Marks]

Hence solve the following equation

$$x dx + y dy + (x^2 + y^2 + z^2 + 1)z dz = 0.$$

[15 Marks]

(c) Find the equation of the integral surface satisfying the linear partial differential equation (PDE),

$$x(y-z)p + y(z-x)q = z(x-y),$$

and passing through the curve x = y = z.

[30 Marks]

(d) Apply Charpit's method or otherwise to find the complete and the singular solution of the following nonlinear first-order PDE

$$p = (qy + z)^2.$$

Here,
$$p = \frac{\partial z}{\partial x}$$
 and $q = \frac{\partial z}{\partial y}$.

[20 Marks]

Q6. (a) Find the Fourier series of the function f(x) given by

$$f(x) = e^x, \quad -\pi < x < \pi.$$

Hence derive a series for $\pi/\sinh \pi$.

[40 Mar

(b) Use the finite Fourier transform to solve the following one-dimension heat equation

$$\frac{\partial U}{\partial t} - \frac{\partial^2 U}{\partial x^2} = 0, \quad 0 < x < \pi, \quad t > 0,$$

subject to the boundary and initial conditions

$$U(0,t) = 0$$
, $U(\pi,t) = 0$, $U(x,0) = 1$.

40 Marks

- (c) (i) Define the gamma-function $\Gamma(x)$ and beta-function B(m,n) where m,n are positive integers.
 - (ii) Evaluate the integral

$$\int_0^1 x^4 (1-x)^2 \, dx.$$

(You may use the following results without proof

$$B(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}.$$

[20 Mark
