EASTERN UNIVERSITY, SRI LANKA
 FIRST EXAMINATION IN SCIENCE - 2012/2013
 SECOND SEMESTER (PROPER/REPEAT)
 (AUGUST/SEPTEMBER 2015)
 PH 103 ELECTRICITY AND MAGNETISM - I

ime: 01 hour
nswer ALL Questions
01.State Gauss's theorem in electrostatics.

Derive an expression for the electric field intensity due to a uniformly charged non-conducting sphere of total charge Q and radius R at an interior point and an exterior point.

Show that the electric potential V inside the sphere at a distance r from its center is given by,

$$
V=\frac{Q}{4 \pi \varepsilon_{0} R}+\frac{Q}{8 \pi \varepsilon_{0}}\left[\frac{1}{R}-\frac{r^{2}}{R^{3}}\right] .
$$

A uniformly charged sphere of radius 30 cm has the total charge of $+5 \mu \mathrm{C}$. Determine the electric field strength, and the electric potential at a distance 18 cm and at the surface of the sphere from the center of the sphere.
Sketch the variation of the electric field strength E with the distance from the center of the sphere.

Assume that the electric potential at infinity is zero.

```
%
```

Given that $\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$, where ε_{0} is the permittivity of free space.
02. State Biot-Savart law and derive an expression for magnetic field produced by an infinitely long current carrying wire at a distance a.

Two long straight parallel wires are 1.3 m apart, and perpendicular to the plane of paper. The wire A carries a current of 1.4 A, directed into the plane of the paper. The wire B carries a current such that the magnetic field of induction at the point D at a distance $5 / 6 \mathrm{~m}$ on X -axis from the wire B, is zero Find,
(i) the magnitude and direction of the current in wire B
(ii) the magnitude of the magnetic field of induction at point C
(iii) the force per unit length on the wire B
(iv) find the value of vertical distance y at which magnetic field is maximum.

Assume that $\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$.

