When two monochromatic light beams of wavelength λ, intensities I_{l} and I_{2} and phase difference δ are interfered at any point in space as shown in figure 1 , the resultant intensity distribution at point P is given by

$$
I_{P}=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \delta
$$

Obtain the conditions for maximum and minimum intensities and show a schematic plot describing the variation of I_{P} against δ.

Figure 1
In the arrangement shown in figure 1, the phase difference between the two interfering beams is given by $\delta=\frac{2 \pi}{\lambda}\left(\frac{x d}{D}\right)+\left(\alpha_{1}-\alpha_{2}\right)$, where $\left(\alpha_{1}-\alpha_{2}\right)$ is the initial phase difference.
a) Explain why interference fringes will not be visible when S_{1} and S_{2} are two independent monochromatic light sources; and how this problem is overcome in a Fresnel's biprism experimental arrangement to observe interference.
b) A parallel beam of monochromatic light of wavelength $5893 \AA$ incident upon a Fresnel bi-prism and straight parallel interfering fringes were observed in a screen which was placed 100 cm from the slit. When a lens inserted between the bi-prism and the screen, images of coherent sources were formed in two different positions with separation 4.05 mm and 2.90 mm . If the bi-prism is made of glass of refractive index 1.5 and is illuminated at a distance 25 cm from the slit, then calculate
i. the separation of the coherent sources S_{1} and S_{2};
ii. the fringe width; and
iii. the angle at the vertex of the prism.
2) Figure 2 shows two mutually coherent monochromatic light beams obtained by division amplitude, and the phase difference between the two beams are given $\delta=\frac{2 \pi}{\lambda} 2 d \cos \theta \pm \pi$, where " + " is when $\mu<\mu_{l}$ and " - " is when $\mu>\mu_{l}$.

Figure 2
i. If r_{m} is the radius of $m^{\text {th }}$ order dark fringe and R is the radius of curvature of the curved surface, then show that the height of the air film at $m^{\text {th }}$ order is given b $d_{m}=\frac{r_{m}^{2}}{2 R}$.
ii. Distinguish "fringes of equal thickness" from "fringes of equal inclination".
iii. If the condition for dark fringes is $\delta=(2 m+1) \pi$, where m is an integer, the deduce that the height of the air film at $m^{\text {th }}$ order is $d_{m}=\frac{m \lambda}{2}$.
iv. If radius of curvature $R=26.1 \mathrm{~m}$ and wavelength of the fringe observed is 568 m then calculate the radius of $10^{\text {th }}$ order dark ring?

