EASTERN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE - 2009/2010

SECOND SEMESTER (PROPER/REPEAT)

(April 2012)

PH 103 - ELECTRICITY AND MAGNETISM

Time: 01 hour.

Answer ALL Questions

1. State Gauss's theorem in electrostatics.
a) A conducting spherical volume of radius a carries a total positive charge Q distributed uniformly throughout it. Using Gauss's theorem, derive an expression for the electric field strength inside the sphere at a distance r from its center. Hence show that the electric potential inside the sphere at a distance r from the center is given by:

$$
\frac{Q\left(3 a^{2}-r^{2}\right)}{8 \pi \varepsilon_{0} a^{3}}
$$

b) Using Gauss's theorem, derive an expression for the capacitance per unit length between two long coaxial cylindrical conductors of radius a and $b(>a)$ in air.
2. State Ampere's circuital law clearly identifying the quantities involved.
a) As illustrated in figure (a), a coaxial line carries the same current I upward the in conductor of radius a, and downward the outer conductor of inner radius b and radius c.

Figure (a)
Using Ampere's circuital law, find an expression for the magnitude of the magnetic at a distance r from the conductor, when
i. $r<a$
ii. $a<r<b$ and
iii. $b<r<c$.
b) An infinitely long, cylindrical conductor of radius R carries a current I in the direction. The axis of the cylinder lies in a plane of a rectangular loop of wire with dimensions $2 R$ and L, as shown in the figure (b). The current I in the cylinder uniformly distributed over its cross section perpendicular to its axis.

Figure (b)
i. Using Ampere's circuital law, find an expression for the magnitude of the magns field at a distance $r<R$, measured from the axis of the cylinder.
ii. Find the magnetic flux through the loop due to the current / in the cylinder.

