EASTERN UNIVERSITY, SRI LANKA

 DEPARTMENT OF MATHEMATICSFIRST EXAMINATION IN SCIENCE -2009/2010
SECOND SEMESTER (April/May, 2012)
MT 102-REAL ANALYSIS
(REPEAT)

1. (a) Define the terms Supremum and Infimum of a bounded subset A of \mathbb{R}.
[10marks]
(b) Prove that an upper bound u of a non-empty set S in \mathbb{R} is the supremum of S if, and only if, for each $\epsilon>0$ there exists $x_{0} \in S$ such that $u-\epsilon<x_{0}$.
[30marks]
(c) State the Archimedian principle and use it to prove that there exists a positive real number x such that $x^{2}=2$.
[40marks]
(d) Use the Mathematical induction principle to show that $1^{2}+2^{2}+\cdots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)$ for all $n \in \mathbb{N}$.
[20marks]
2. (a) Define what is meant by the following terms applied to a sequence of real numbers:
i. bounded;
ii. convergent;
iii. monotone.

[15marks]
(b) Prove that every increasing sequence of real numbers which is bounded abo is convergent.
(c) Let $\left(y_{n}\right)$ be a sequence of real numbers defined inductively by

$$
y_{\mathrm{I}}=1, \quad y_{n+1}=\frac{1}{4}\left(2 y_{n}+3\right) \text { for all } n \in \mathbb{N}
$$

Show that $\left(y_{n}\right)$ is convergent and $\lim _{n \rightarrow \infty} y_{n}=\frac{3}{2}$.
[50mark
3. (a) i. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Explain what is meant by the function has a limit $l(\in \mathbb{R})$ at a point $a(\in \mathbb{R})$.
ii. Use the definition of the limit to show that $\lim _{x \rightarrow-1} \frac{x+5}{2 x+3}=4$.
[25mark
(b) i. Let $A \subseteq \mathbb{R}$ and $f: A \rightarrow \mathbb{R}$ be a function. Let $a \in \mathbb{R}$. Prove thi $\lim _{x \rightarrow a} f(x)=l$ exists finitely if, and only if, for every sequence $\left(x_{n}\right)$ in that converges to a such that $x_{n} \neq a$ for all $n \in \mathbb{N}$, the sequence ($f(x)$ converges to l.
[40mark
ii. Let $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ be defined by $f(x)=\sin (1 / x) \quad \forall x \neq 0$. Show thi $\lim _{x \rightarrow 0} f(x)$ does not exists in \mathbb{R}.
[20mart
4. (a) i. Define what is meant by the statement that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ continuous at a point $a(\in \mathbb{R})$.
ii. Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\cos x, \quad \forall x \in \mathbb{R}$ continuous at every point in \mathbb{R}.
(b) Let $I=[a, b]$ be a closed and bounded interval in \mathbb{R}. Prove that if $f: I+$ is continuous on I then f is bounded on I.
(c) State the Intermediate Value Theorem and use it to prove that the equatii $2 x^{2}(x+2)-1=0$ has a root in each of the intervals $(-2,-1),(-1,0)$ a $(0,1)$.
5. (a) i. Define what is meant by a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at the poi $x_{0} \in \mathbb{R}$.
ii. Discuss differentiability of each of the following functions $f: \mathbb{R} \rightarrow \mathbb{R}$ at the origin:

1. $f(x)=\sin x$
2. $f(x)=|x|$
3. $f(x)= \begin{cases}3+x, & x \leq 0 ; \\ 3-x, & x>0 .\end{cases}$
[30marks]
(b) i. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function where $a, b \in \mathbb{R}$ with $a<b$. Suppose that f is continuous on $[a, b]$ and differentiable on (a, b). Prove that there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

(You may use the Rolle's Theorem without proving it.)
[30marks]
ii. Show that $x<\sin ^{-1} x<\frac{x}{\sqrt{1-x^{2}}} \quad \forall x \in(0,1)$.
[25marks]
6. (a) Suppose that f and g are two continuous real valued functions defined on $[a, b]$, where $a, b \in \mathbb{R}$ with $a<b$. Suppose also that f and g are differentiable on (a, b) and $g^{\prime}(x) \neq 0 \quad \forall x \in(a, b)$. Prove that for some $c \in(a, b)$,

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)} .
$$

(You may use the Rolle's Theorem without proving it.)
[30marks]
(b) i. Suppose that f and g are continuous on $[a, b]$, differentiable on (a, b) and let $f(c)=g(c)=0$ for some $c \in(a, b)$. Further suppose that $g(x) \neq 0$ and $g^{\prime}(x) \neq 0$ for all $x \in(a, b) \backslash\{c\}$. If $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=l$ exists finitely prove that $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=l$.
[20marks]
ii. Prove that $\lim _{x \rightarrow 0} \frac{(1-\cos x)}{x^{2}}=\frac{1}{2}$.
[15marks]
(c) State the Taylor's Theorem and use it to prove that

$$
1-\frac{1}{2} x^{2} \leq \cos x \quad \forall x \in \mathbb{R}
$$

