EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS SECOND EXAMINATION IN SCIENCE - 2014/2015

FIRST SEMESTER (Nov./Dec., 2016)
AM 215 - CLASSICAL MECHANICS II (PROPER
swer all Questions
Time: One hour

With the usual notations, obtain the following equations for a common catenary:
(a) $s=c \tan \psi$;
(b) $y=c \sec \psi$;
(c) $T=w y$;
(d) $y^{2}=s^{2}+c^{2}$.

A uniform chain of length $2 l$, has its ends attached to two points in the same horizontal line at a distance $2 a$ apart. If l is slightly greater than a, show that the tension of the chain is approximately equal to the weight of the length $\sqrt{\frac{a^{3}}{6 a(l-a)}}$ of the chain and that the sag in the middlesis almost equal to

$$
\frac{1}{2} \sqrt{6 a(l-a)}
$$

2. With the usual notations, prove the Claypeyron's equation

$$
M_{1} a+2 M_{2}(a+b)+M_{3} b=-\frac{\omega}{4}\left(a^{3}+b^{3}\right)+6 E I\left(\frac{y_{a}}{a}+\frac{y_{b}}{b}\right)
$$

for the moment of a slightly elastic beam.
A uniform slightly elastic beam $A D$ of length $4 a$ weight W rests on four supports which are in the same horizontal level. The supports are placed at the end points of the beam and at a point B and C such that $A B=2 a, B C=a$ and $C D=a$. Show that magnitude of the bending moments at B and C are $\frac{17 W a}{184}$ and $\frac{3 \mathrm{Wa}}{368}$ respectively. Find the ratio of the reactions at the four supports.

