EASTERN UNIVERSITTY, SRI LANKA DEPARTMENT OF MATHEMATICS
 SECOND YEAR EXAMINATION IN SCIENCE (2012/2013)
 FIRST SEMESTER (Mar/Apr, 2016)
 CS 201 - DATA STRUCTURES AND DESIGN OF ALGORITHMS

Answer all questions

Time: Two hours
(1)
a) Define "data structure" and state its importance in solving problems.
b) Briefly describe the following terms in data structure:
i) Linear data structure.
ii) Non-linear data structure.
c) List down five characteristics of an algorithm.
d) Explain the asymptotic notations of an algorithm.
e) Let $P(n)$ and $Q(n)$ be two non-negative functions which are $P(n)=P(n-1)+n, P(1)=1$,
$Q(n)=8 n^{3}+4$. Show that $Q(n)$ is asymptotically bigger than $P(n)$.
i) Briefly describe the recursion in algorithm design.
g) Write an algorithm to print the Pascal triangle using recursion.

Q2)
a) Define the stack data structure and its ADT operations.
b) Write algorithms for the following:
i. To insert an element into the stack;
ii. To remove an element from the stack.
c) Briefly describe the stack errors in the data structure.
d) Discuss the pros and cons of using stack data structure.
e) A string is said to be db-mirrored if it is in the form XdbY , where X is a stringd and Y is the reverse of X, d and b are characters ' d ' and ' b '. For example goodgiti and badbboybdyobdab are examples of db-mirrored strings. Suppose youra check whether a given string is db -mirrored string or not.

Explain briefly how a stack data structure can be used to perform the task. Write a procedure/function to fulfil the task using a stack data structure.
f) Explain the advantage of circular queue compared with linear queue.

Q3)
a) Describe briefly the binary tree Data Structure.
b) State clearly the differences between complete and full binary trees.
c) Define each of the following traversals:
(i) pre-order, (ii) in-order, (iii) post-order, (iv) level order.

Consider the binary tree shown in the figure below:

List the names in the nodes in each of the above traversals.
d) Draw a binary tree of 13 nodes labelled B, F, G, H, L, M, N, P, Q, S, T, V, W in such a way that a pre-order traversal results in $\mathrm{G}, \mathrm{B}, \mathrm{H}, \mathrm{T}, \mathrm{L}, \mathrm{M}, \mathrm{F}, \mathrm{S}, \mathrm{W}, \mathrm{V}, \mathrm{P}, \mathrm{Q}, \mathrm{N}$ and an in-order traversal results in $\mathrm{H}, \mathrm{T}, \mathrm{B}, \mathrm{M}, \mathrm{F}, \mathrm{L}, \mathrm{G}, \mathrm{W}, \mathrm{P}, \mathrm{V}, \mathrm{S}, \mathrm{Q}, \mathrm{N}$.
e) Describe briefly the shortest path problem and how "Dijkstra's Algorithm" finds a solution for that problem.

Find the shortest distance of the places Inn, Brewery, Mayor's House, Bakery, McFane's Farm, Thomas' Farm, Dry Cleaner, and City Hall from the source place Library using "Dijkstra's Algorithm".

Q4)
a) Briefly describe the algorithm of divide and conquer method.
b) Sort the following numbers using the above algorithm.

29	6	20	14	10	4	19	83	12	26

c) Explain the binary search using a suitable example.
d) What are the differences between breadth first search (BFS) and death first sear
e) Consider the following graph illustrating 4 cities P, Q, R, and S with proposed connections and their costs.

Suppose that you want to build a minimum cost spanning tree out of this graph
i) Give an algorithm for it, and get the minimum cost spanning tree app algorithm.
ii) Suppose a new city T is added with a proposed cost of C_{T} for the connection the 4 cities, Show how it would change the new minimum cost spanning teet (to include T)

1. If $\mathrm{C}_{\mathrm{T}}<4$, and
2. If $\mathrm{C}_{\mathrm{T}}>6$.
