27 OCT 2017

EASTERN UNIVERSITY, SRI LANKA
 DEPARTMENT OF MATHEMATICS
 SECOND EXAMINATION IN SCIENCE - 2012/2013
 FIRST SEMESTER (Feb./Mar., 2016)
 MT 207 - NUMERICAL ANALYSIS
 (REPEAT)

(a) Define what is meant by:
i. absolute error;
ii. relative error .
(b) i. Show that the polynomial nesting technique can be used to evaluate

$$
f(x)=1.01 e^{4 x}-4.62 e^{3 x}-3.11 e^{2 x}+12.2 e^{x}-1.99
$$

ii. Use three - digit rounding arithmetic and the formula given in the statement of part (i) to evaluate $f(1.53)$. Evaluate the absolute error and relative error.
iii. Repeat the calculation in part (ii) using the nesting form of $f(x)$ that was found in part (i) . Compare the approximations with parte'(ii).
2. (a) Let $x=\phi(x)$ be, the rearrangement of the equation $f(x)=0$ and iteration,

$$
x_{n+1}=\phi\left(x_{n}\right), \quad n=0,1, \ldots \ldots
$$

with the initial value x_{0}. If $\phi^{\prime}(x)$ exists and is continuous such that $\left|\phi^{\prime}(x)\right|$ for all x, then show that the sequence $\left(x_{n}\right)$ generated by the above converges to the unique root α of the equation $f(x)=0$.
The function $g(x)=x^{3}-x^{2}-4 x+5$ has three fixed points. One of them
i. Find the other two fixed points.
ii. Does fixed point iteration of g converge for x_{0} near 1? Explain.
(b) i. Obtain Newton Raphson method to compute the root of the above in an interval $[a, b]$. Then use it to approximate the solution to x. with an error of at most 10^{-4}.
ii. Define the order and the asymptotic error constant of the iteration to compute the non linear equation

$$
f(x)=0
$$

Hence show that the asymptotic error constant of the Newton method is $\frac{1}{2} \frac{f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)}$.
3. (a) Suppose that $x_{0}, x_{1}, \ldots, x_{n}$ are distinct numbers in the interval $f \in C^{n+1}[a, b]$. Obtain a unique polynomial $P_{n}(x)$ of degree at most property

$$
f\left(x_{k}\right)=P_{n}\left(x_{k}\right) \quad \text { for each } k=0,1,2, \ldots, n
$$

and show that

$$
f(x)-P_{n}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right) \frac{f^{n+1}(\xi)}{(n+1)!}
$$

where $\xi \in[a, b]$.
(b) i. Use Lagrange's method to find the interpolating polynomial for the data:

i	0	1	2	3
x_{i}	1	2	3	4
$\ln x_{i}$	0	0.693	1.099	1.386

ii. Approximate $\ln (2.718)$ using the polynomial obtained in part (i).
iii. Find an upper bound on the error for the Lagrange interpolating polynomial on the interval $[1,4]$.
(a) Use the Jacobi method to approximate the solution of the following system of linear equations.

$$
\begin{aligned}
5 x_{1}-2 x_{2}+3 x_{3} & =-1 \\
-3 x_{1}+9 x_{2}+x_{3} & =2 \\
2 x_{1}-x_{2}-7 x_{3} & =3
\end{aligned}
$$

Continue the iterations until two successive approximations are identical when rounded to three significant digits.
(b) With the usual notations, the Simpson's rule is given by

$$
\int_{x_{i-1}}^{x_{i+1}} f(x) d x=\frac{h}{3}\left(f_{i-1}+4 f_{i}+f_{i+1}\right)-\frac{1}{90} h^{5} f^{(i v)}\left(\xi_{i}\right), \text { where } \xi_{i} \in\left[x_{i-1}, x_{i+1}\right]
$$

Obtain the composite Simpson's rule, and show that the composite error is less than or equal to

$$
\frac{1}{180} h^{4}(b-a)\left|f^{(i v)}(\xi)\right|, \text { where }\left|f^{(i v)}(\xi)\right|=\max _{a \leq x \leq b}\left|f^{(i v)}(x)\right|
$$

A missile is launched from a ground station. The acceleration during its 80 seconds of flight, as recorded, is given in the following table:

$t(s)$	0	10	20	30	40	50	60	70	80
$a\left(\mathrm{~ms}^{-2}\right)$	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67

compute the velocity of the missile when $t=80$, using Simpson's $\frac{1}{3}$ rule.

