

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS SECOND EXAMINATION IN SCIENCE - 2012/2013 FIRST SEMESTER (Feb./Mar., 2016) MT 207 - NUMERICAL ANALYSIS (REPEAT)

nswer all Questions

Time: Two hours

- 1. (a) Define what is meant by:
 - i. absolute error;
 - ii. relative error .
 - (b) i. Show that the polynomial nesting technique can be used to evaluate

 $f(x) = 1.01e^{4x} - 4.62e^{3x} - 3.11e^{2x} + 12.2e^x - 1.99.$

- ii. Use three digit rounding arithmetic and the formula given in the statement of part (i) to evaluate f(1.53). Evaluate the absolute error and relative error.
- iii. Repeat the calculation in part (ii) using the nesting form of f(x) that was found in part (i). Compare the approximations with part*(ii).

2. (a) Let $x = \phi(x)$ be the rearrangement of the equation f(x) = 0 and b iteration,

$$x_{n+1} = \phi(x_n),$$
 $n = 0, 1,$

with the initial value x_0 . If $\phi'(x)$ exists and is continuous such that $|\phi'(x)|$ for all x, then show that the sequence (x_n) generated by the above converges to the unique root α of the equation f(x) = 0.

The function $g(x) = x^3 - x^2 - 4x + 5$ has three fixed points. One of them

- i. Find the other two fixed points.
- ii. Does fixed point iteration of g converge for x_0 near 1? Explain.
- (b) i. Obtain Newton Raphson method to compute the root of the above in an interval [a, b]. Then use it to approximate the solution to xwith an error of at most 10⁻⁴.
 - ii. Define the order and the asymptotic error constant of the iteration to compute the non linear equation

$$f(x) = 0.$$

Hence show that the asymptotic error constant of the Newton method is $\frac{1}{2} \frac{f''(\alpha)}{f'(\alpha)}$.

3. (a) Suppose that x₀, x₁, . . ., x_n are distinct numbers in the interval f ∈ Cⁿ⁺¹[a, b]. Obtain a unique polynomial P_n(x) of degree at most property

$$f(x_k) = P_n(x_k)$$
 for each $k = 0, 1, 2, ..., n$

and show that

$$f(x) - P_n(x) = (x - x_0)(x - x_1) \dots (x - x_n) \frac{f^{n+1}(\xi)}{(n+1)!}$$

where $\xi \in [a, b]$.

(b) i. Use Lagrange's method to find the interpolating polynomial for the data:

i	0 1		2	3	
x_i	1	2	3	4	
$\ln x_i$	0	0.693	1.099	1.386	

ii. Approximate ln(2.718) using the polynomial obtained in part (i).

iii. Find an upper bound on the error for the Lagrange interpolating polynomial on the interval [1, 4].

(a) Use the Jacobi method to approximate the solution of the following system of linear equations.

 $5x_1 - 2x_2 + 3x_3 = -1$ $-3x_1 + 9x_2 + x_3 = 2$ $2x_1 - x_2 - 7x_3 = 3$

Continue the iterations until two successive approximations are identical when rounded to three significant digits.

(b) With the usual notations, the Simpson's rule is given by

$$\int_{x_{i-1}}^{x_{i+1}} f(x)dx = \frac{h}{3} \left(f_{i-1} + 4f_i + f_{i+1} \right) - \frac{1}{90} h^5 f^{(iv)}(\xi_i), \text{ where } \xi_i \in [x_{i-1}, x_{i+1}].$$

Obtain the composite Simpson's rule, and show that the composite error is less than or equal to

$$\frac{1}{180}h^4(b-a)\left|f^{(iv)}(\xi)\right|, \text{ where } \left|f^{(iv)}(\xi)\right| = \max_{a \le x \le b}\left|f^{(iv)}(x)\right|.$$

A missile is launched from a ground station. The acceleration during its 80 seconds of flight, as recorded, is given in the following table:

t(s)	0	10	20	30	40	50	60	70	80
$a(ms^{-2})$	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67

compute the velocity of the missile when t = 80, using Simpson's $\frac{1}{3}$ rule.

3