EASTERN UNIVERSITY, SRI LANKA
SECOND YEAR SECOND SEMESTER EXAMINATION IN SCIENCE-2013/2014 (OCTOBER/NOVEMBER' 2016)
CH 205 BORON CHEMISTRY AND SILICATES (PROPER)
Inswer all questions
Time: ONE Hour
.a) State the 'Wade's rule'
b) Discuss the type of bonding and structure of the following boron compounds using Wade's rules
i. $\mathrm{B}_{4} \mathrm{H}_{10}$
ii. $\mathrm{B}_{4} \mathrm{H}_{4}{ }^{2-}$
(30 Marks)
c) Write a plausible product for the interaction of $\mathrm{Li}\left[\mathrm{B}_{10} \mathrm{H}_{13}\right]$ with $\mathrm{Al}_{2}\left(\mathrm{CH}_{3}\right)_{6}$? Give reason(s).
d) A boron-based compound is composed of boron, carbon, chlorine, and oxygen with the molecular formula of the $\mathrm{B}_{4} \mathrm{CCl}_{6} \mathrm{O}$. Spectral measurements indicate the molecule has two types of B atoms, with tetrahedral and trigonal planar geometry in a ratio of $1: 3$ respectively. These spectra show the presence of a CO triple bond. Suggest a possible structure for the above molecule.
e) How would be the following transformations be effected through organo-met intermediate(s)?
i.

ii.

2. a) Derive the possible "styx" number for $\mathrm{B}_{5} \mathrm{H}_{9}$ and draw the most possible schem diagram(s) corresponding "styx" number.
b) Explain the type of bonding and structure of the following carboranes compounds Wade's rules
i. $\mathrm{CB}_{5} \mathrm{H}_{9}$
ii. $\quad \mathrm{C}_{3} \mathrm{~B}_{3} \mathrm{H}_{7}$
c) i. List the structural types of silicates.
ii. Classify the following silicates into different structural types and describe their structure.
I. Diopside $\left(\mathrm{CaMg}\left(\mathrm{SiO}_{3}\right)_{2}\right)$
II. Beryl $\left(\mathrm{Be}_{3} \mathrm{Al}_{2} \mathrm{Si}_{6} \mathrm{O}_{18}\right)$
III. Talc ($3 \mathrm{MgO} .4 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$)
IV. Kaolin $\left(\mathrm{Al}_{2}(\mathrm{OH})_{4} \mathrm{Si}_{2} \mathrm{O}_{5}\right)$
V. Thortveitite $\left(\mathrm{Sc}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}\right)$
(30 Marks)
) Show by means of equations how the following transformations could be effected via organometalic intermediates
i. $\mathrm{B}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$
ii. $\mathrm{R}_{3} \mathrm{~B} \longrightarrow \mathrm{O}=\mathrm{B}-\mathrm{C}(\mathrm{R})_{3}$

End of paper

