

SECOND YEAR SECOND SEMESTER EXAMINATION IN SCIENCE-2013/2014 (OCTOBER/NOVEMBER' 2016)

CH 205 BORON CHEMISTRY AND SILICATES

(PROPER)

Inswer all questions

Time: ONE Hour

. a) State the 'Wade's rule'

(10 Marks)

b) Discuss the type of bonding and structure of the following boron compounds using Wade's rules

i. B₄H₁₀

ii. B₄H₄²⁻

(30 Marks)

c) Write a plausible product for the interaction of $Li[B_{10}H_{13}]$ with $Al_2(CH_3)_6$? Give reason(s).

(10 Marks)

d) A boron-based compound is composed of boron, carbon, chlorine, and oxygen with the molecular formula of the B₄CCl₆O. Spectral measurements indicate the molecule has two types of B atoms, with tetrahedral and trigonal planar geometry in a ratio of 1:3 respectively. These spectra show the presence of a CO triple bond.

Suggest a possible structure for the above molecule.

(30 Marks)

Contd

e) How would be the following transformations be effected through organo-met intermediate(s)?

ii.
$$H_3C$$
 $C=C$ CH_3 CH_3 CH_3

 a) Derive the possible "styx" number for B₅H₉ and draw the most possible schem diagram(s) corresponding "styx" number.

b) Explain the type of bonding and structure of the following carboranes compounds
Wade's rules

i. CB₅H₉

ii. C₃B₃H₇

c) i. List the structural types of silicates.

(20 N

 $(20 \, \text{N})$

 $(20 \, \text{N})$

(10)

- ii. Classify the following silicates into different structural types and describe their structure.
 - I. Diopside (CaMg(SiO₃)₂)
 - II. Beryl (Be₃Al₂Si₆O₁₈)
 - III. Talc (3MgO.4SiO₂.H₂O)
 - IV. Kaolin (Al₂(OH)₄Si₂O₅)
 - V. Thortveitite (Sc₂Si₂O₇)

(30 Marks)

-) Show by means of equations how the following transformations could be effected via organometalic intermediates
 - i. B₂H₆ → B₃N₃H₆
- ii. R₃B → O=B-C(R)₃

(20 Marks)

End of paper