27 OCT 2017

EASTERN UNIVERSITY, SRI LANKA
 SECOND EXAMINATION IN SCIENCE - 2013/2014
 SECOND SEMESTER (Oct./Nov., 2016)

 AM 218-FIELD THEORY

 AM 218-FIELD THEORY (PROPER)

 (PROPER)}
21. State the Coulomb's law and Gauss's Law in Electric field.
(a) A total amount of charge Q is uniformly distributed along a thin, straight, plastic rod of length L. Find the electric force acting on a point charge q located at a point P, at a horizontal distance d from one end of the rod.
(b) A spherical conductor of radius a carrying a charge e_{1} is surrounded by a concentric spherical conducting sheet of radius b and carrying a charge e_{2}, both conductors being insulated. Find the potential at a point between the spheres. If the inner conductor is connected by a fine insulated conducting wire passing through a small hole in the outer conductor to a distant uncharged and insulated spherical conductor of radius c, prove that the latter will be raised to a potential $\frac{e_{1} b+e_{2} a}{4 \pi \epsilon_{0} b(a+c)}$, where ϵ_{0} is the permittivity of free space.
2. (a) Define the terms electric potential and electric dipole.

A total charge Q is distributed along a straight rod of length L. Find the potential at a point P at a vertical distance h from the mid point of the rod.

Prove that the electric potential ϕ at a point P with position vector \underline{r} form the dipole moment \underline{p} is given by

$$
\phi=\frac{\underline{p} \cdot \underline{r}}{4 \pi \epsilon_{0} r^{3}} .
$$

(b) State the Poisson's equation in electric field.

Show that the solution of the equation $\nabla^{2} \phi=0$ in rectangular coord given by

$$
\phi=e^{ \pm i \alpha x} e^{ \pm i \beta y} e^{ \pm \sqrt{\alpha^{2}+\beta^{2}} z}
$$

where α and β are arbitrary constants.

Q3. (a) Using Ampere's circuit law and Biot-Savart law, prove that $\nabla^{2} \phi=0$, is scalar potential.
(b) Show that the equivalence between Biot-Savart and Ampere's laws brought out by determining the magnetic field \vec{B} due to an infinit conductor carrying a steady current through it.
(c) Particle A with charge q and mass m_{A}, and particle B with charge mass m_{B} are accelerated from rest by a uniform magnetic field in circular paths. The radii of the trajectories of the particles A and B a: $2 R$, respectively. The direction of the magnetic field is perpendicula velocity of the particle. Show that $m_{A}: m_{B}=1: 8$.

Q4. (a) Define the terms magnetic flux density and the magnetic dipole. Show that $\vec{\nabla} \cdot \vec{B}=0$ in space, where \vec{B} is the magnetic field.
(b) If the magnetic field normal to the plane of a circular coil of n turns and r which carries a current I is measured on the axis of the coil, show t magnetic field at a small distance h from the center of the coil is

$$
\frac{\mu_{0} n I}{2 r}\left(1-\frac{3 h^{2}}{2 r^{2}}\right) \quad \text { where } r \gg h
$$

(c) An amount of charge Q is uniformly distributed over a disk of radius disk spins about its axis with angular velocity ω. Find the magnetic moment of the disk.

