EASTERN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE - 2013/2014

SECOND SEMESTER (October -2016)

PH 204 MECHANICS - II

ne: 01 hour.
swer ALL Questions

Show that the radial and transverse components of the acceleration of a particle in plane polar coordinates are given by $\left(\ddot{r}-r \dot{\theta}^{2}\right)$ and $(r \ddot{\theta}+2 \dot{r} \dot{\theta})$ respectively.

A particle of mass m moves in a central force field, with angular momentum L and potential energy $V(r)$. Show that the total energy of the particle is given by,

$$
E=\frac{1}{2} m \dot{r}^{2}+\frac{L^{2}}{2 m r^{2}}+V(r)
$$

Determine the centrifugal potential energy, and hence show the corresponding force acting on the particle is given by,

$$
F_{\text {cent }}=m r \dot{\theta}^{2}
$$

f the central force acting on the particle is given by $F(r)=k / r^{2}$, find the total nergy of the particle.

02 . State the Kepler's laws of planetary motion.
Define the term gravitational field strength.
The gravitational pull of Earth keeps a Satellite in a circular orbit. magnitude of the gravitational force and centripetal force between the Eart Satellite. Hence, show that the period T of the Sattalite orbiting at a radiu given by,

$$
T^{2}=\frac{4 \pi^{2} r^{3}}{G M_{E}}
$$

where, M_{E} and m are the masses of the Earth and Satellite respectively, Universal gravitational constant, and r is distance of Satellite from the Earth.

The Satellite orbits at a height of 80 km above the surface of Earth. Calc period of the orbit of the Satellite. Assume that the radius of Earth is 6.4 and $G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$.

