EASTERN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE - 2013/2014

SECOND SEMESTER (PROPER/REPEAT)

(OCTOBER 2016)

PH 205 RELATIVITY

Time: 01 hour

QI. State the fundamental postulates of the special theory of relativity and hence deduce the Lorentz transformation equations. Using the Lorentz transformation equations obtain the velocity transformation equations

$$
U_{x}^{\prime}=\frac{U_{x}-\beta c}{1-\frac{U_{x} \beta}{c}}, U_{y}^{\prime}=\frac{U_{y}}{\gamma\left[1-\frac{U_{x} \beta}{c}\right]} \text { and } U_{z}^{\prime}=\frac{U_{z}}{\gamma\left[1-\frac{U_{x} \beta}{c}\right]}
$$

where the symbols have their usual meaning, and $v=\beta c$.
A spaceship moves away from Earth with speed v and fires a shuttle craft in the forward direction at a speed v relative to the spaceship. The pilot of the shuttle craft launches a probe in the forward direction at speed v relative to the shuttle craft. Show;
(i) the speed of the shuttle craft relative to the Earth is;

$$
\bar{v}=\frac{2 v}{1+\beta^{2}}
$$

(ii) the speed of the probe relative to the Earth is;

$$
u_{x}=\left(\frac{3+\beta^{2}}{1+3 \beta^{2}}\right) v
$$

Hence, deduce that $u_{x} \rightarrow 3 v$, when $\beta \rightarrow 0$.

Q2.
Define the terms relativistic energy E and relativistic momentum p particle in terms of its velocity v, rest mass m, and the speed of light c.

Hence, show that Energy-Momentum equation of the particle is given by

$$
\begin{array}{ll}
& E^{2}-p^{2} c^{2}=m^{2} c^{4}, \\
\text { and } & \beta=\frac{v}{c}=\frac{p c}{E} .
\end{array}
$$

Prove that the quantity $E^{2}-p^{2} c^{2}$ is invariant.
The symbols have their usual meanings.
A photon of energy E travelling in the positive $(+) x$ direction col elastically with an electron of mass m moving in the opposite direction. the collision, the photon travels back along the negative $(-) x$ direction the same energy E.
(i) Use the conservation of energy and momentum to demonstrate thai initial and final electron momenta are equal and opposite, and magnitude E / c.
(ii) Hence, show that the electron speed is given by

$$
\frac{v}{c}=\left[1+\left(\frac{m c^{2}}{E}\right)^{2}\right]^{-\frac{1}{2}} .
$$

