06 NON 20 f5

EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS
SECOND EXAMINATION IN SCIENCE - 2011/2012
FIRST SEMESTER (Apr./May, 2014)

AM 207 - NUMERICAL ANALYSIS

(Proper \& Repeat)

1. (a) Define what is meant by:
i. absolute error;
ii. relative error .

Let $p=0.54617$ and $q=0.54601$. Use four-digit arithmetic to approximate $p-q$, and determine the absolute and relative errors when rounding and chopping.
(b) Let $f(x)=\frac{1}{1+x}$.
i. Compute the $n^{\text {th }}$ derivative of $f(x)$ and the Taylor polynomial $P_{n}(x)$ of $f(x)$ for $x_{0}=0$.
ii. Let $R_{n}(x)$ denotes the remainder term $f(x)-P_{n}(x)$ in Taylor's Theorem. For each n, show that $\left|R_{n}(x)\right|=|x|^{n+1}$ for all $x \geq 0$.
iii. Show that

$$
\arctan x=\int_{0}^{x} \frac{1}{1+t^{2}} d t=\int_{0}^{x} f\left(t^{2}\right) d t
$$

iv. For $n=1,2$, approximate $\arctan \left(\frac{1}{2}\right)$ by using $\int_{0}^{x} P_{n}\left(t^{2}\right) d t$.
2. (a) Let $x=\phi(x)$ be the rearrangement of the equation $f(x)=0$ and define the iteration,

$$
x_{n+1}=\phi\left(x_{n}\right), \quad n=0,1, \ldots
$$

with the initial value x_{0}. If $\phi^{\prime}(x)$ exists and is continuous such that $\left|\phi^{\prime}(x)\right| \leq K<$ for all x, where K is a positive constant, then show that the sequence $\left(x_{n}\right)$ ger erated by the above iteration converges to the unique root α of the equation $f(x)=0$.

The equation $x \cos x=x \sin x$ has a root at $x=\pi / 4$. Which of the iteratio processes: $x_{i+1}=x_{i} \tan x_{i}$ or $x_{i+1}=x_{i} \cot x_{i}$ should be used to find this root?
(b) Obtain Newton Raphson method to compute the root of the equation $f(x)=0$ i an interval $[a, b]$.
Use the Newton-Rapshon method to find a positive real root of $\cos x-x^{3}=$ correct to four decimal places.
3. (a) If $f \in C^{n+1}[a, b]$ and P_{n} is the Lagrange's interpolating polynomial which interp lates the function $f(x)$ at the distinct points $x_{0}, x_{1}, \ldots ., x_{n}$ in $[a, b]$, prove that f_{c} all $x \in[a, b]$, there exists $\xi \in(a, b)$ such that the error, $E(x)$, in the interpolatio is given by

$$
E(x)=\frac{\prod_{n+1}(x)}{(n+1)!} f^{n+1}(\xi)
$$

where $\prod_{n+1}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)$.
(b) Let $f(x)=\sqrt{x}$.
i. Compute the second degree interpolating polynomial, $P_{2}(x)$, for $f(x)$ usin the points $x_{0}=1, x_{1}=2.25$ and $x_{2}=4$.
ii. Evaluate P_{2} (2) and use the interpolation error theorem to estimate the erro in this approximation of $\sqrt{2}$.
iii. Compute the actual error and compare with the estimated value in part (ii),
4. (a) With the usual notations, the Simpson's rule is given by

$$
\int_{x_{i-1}}^{x_{i+1}} f(x) d x=\frac{h}{3}\left(f_{i-1}+4 f_{i}+f_{i+1}\right)-\frac{1}{90} h^{5} f^{(i v)}\left(\xi_{i}\right), \text { where } \xi_{i} \in\left[x_{i-1}, x_{i+1}\right]
$$

Obtain the composite Simpson's rule, and show that the composite error is less than or equal to

$$
\frac{1}{180} h^{4}(b-a)\left|f^{(i v)}(\xi)\right|, \text { where }\left|f^{(i v)}(\xi)\right|=\max _{a \leq x \leq b}\left|f^{(i v)}(x)\right|
$$

Hence show that composite Simpson's rule is exact for all polynomials of degree 3 or less.
(b) Find the solution of the system of equations

$$
\begin{aligned}
45 x_{1}+2 x_{2}+3 x_{3} & =58 \\
-3 x_{1}+22 x_{2}+2 x_{3} & =47 \\
5 x_{1}+x_{2}+20 x_{3} & =67
\end{aligned}
$$

correct to three decimal places, using the Gauss-Seidel iteration method.

