

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS SECOND EXAMINATION IN SCIENCE - 2011/2012 FIRST SEMESTER (Apr./May, 2014) AM 207 - NUMERICAL ANALYSIS (Proper & Repeat)

nswer all questions

Time : Two hours

- 1. (a) Define what is meant by:
 - i. absolute error;
 - ii. relative error .

Let p = 0.54617 and q = 0.54601. Use four-digit arithmetic to approximate p - q, and determine the absolute and relative errors when rounding and chopping.

- (b) Let $f(x) = \frac{1}{1+x}$.
 - i. Compute the n^{th} derivative of f(x) and the Taylor polynomial $P_n(x)$ of f(x) for $x_0 = 0$.
 - ii. Let $R_n(x)$ denotes the remainder term $f(x) P_n(x)$ in Taylor's Theorem. For each n, show that $|R_n(x)| = |x|^{n+1}$ for all $x \ge 0$.
 - iii. Show that

arctan
$$x = \int_0^x \frac{1}{1+t^2} dt = \int_0^x f(t^2) dt.$$

iv. For n = 1, 2, approximate $\arctan\left(\frac{1}{2}\right)$ by using $\int_0^x P_n(t^2) dt$.

2. (a) Let $x = \phi(x)$ be the rearrangement of the equation f(x) = 0 and define the iteration,

$$x_{n+1} = \phi(x_n),$$
 $n = 0, 1, ...$

with the initial value x_0 . If $\phi'(x)$ exists and is continuous such that $|\phi'(x)| \leq K < 0$ for all x, where K is a positive constant, then show that the sequence (x_n) generated by the above iteration converges to the unique root α of the equation f(x) = 0.

The equation $x \cos x = x \sin x$ has a root at $x = \pi/4$. Which of the iteration processes: $x_{i+1} = x_i \tan x_i$ or $x_{i+1} = x_i \cot x_i$ should be used to find this root?

- (b) Obtain Newton Raphson method to compute the root of the equation f(x) = 0i an interval [a, b].
 Use the Newton-Rapshon method to find a positive real root of cos x x³ = correct to four decimal places.
- 3. (a) If f ∈ Cⁿ⁺¹[a, b] and P_n is the Lagrange's interpolating polynomial which interpolates the function f(x) at the distinct points x₀, x₁, ..., x_n in [a, b], prove that for all x ∈ [a, b], there exists ξ ∈ (a, b) such that the error, E(x), in the interpolation is given by

$$E(x) = \frac{\prod_{n+1} (x)}{(n+1)!} f^{n+1}(\xi),$$

where $\prod_{n+1} (x) = (x - x_0)(x - x_1)...(x - x_n).$

(b) Let $f(x) = \sqrt{x}$.

- i. Compute the second degree interpolating polynomial, $P_2(x)$, for f(x) using the points $x_0 = 1$, $x_1 = 2.25$ and $x_2 = 4$.
- ii. Evaluate $P_2(2)$ and use the interpolation error theorem to estimate the error in this approximation of $\sqrt{2}$.
- iii. Compute the actual error and compare with the estimated value in part (ii)

4. (a) With the usual notations, the Simpson's rule is given by

$$\int_{x_{i-1}}^{x_{i+1}} f(x)dx = \frac{h}{3} \left(f_{i-1} + 4f_i + f_{i+1} \right) - \frac{1}{90} h^5 f^{(iv)}(\xi_i), \text{ where } \xi_i \in [x_{i-1}, x_{i+1}].$$

Obtain the composite Simpson's rule, and show that the composite error is less than or equal to

$$\frac{1}{180}h^4(b-a)\left|f^{(iv)}(\xi)\right|, \text{ where } \left|f^{(iv)}(\xi)\right| = \max_{a \le x \le b}\left|f^{(iv)}(x)\right|.$$

Hence show that composite Simpson's rule is exact for all polynomials of degree 3 or less.

(b) Find the solution of the system of equations

$45x_{1}$	+	$2x_2$	+	$3x_3$	_	58
$-3x_{1}$	+	$22x_{2}$	+	$2x_3$	=	47
$5x_1$	+	x_2	+	$20x_{3}$	=	67,

and a

correct to three decimal places, using the Gauss-Seidel iteration method.