

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS SECOND EXAMINATION IN SCIENCE - 2012/2013 SECOND SEMESTER (Oct./Nov., 2015) PM 202 - METRIC SPACE (Proper & Repeat)

Answer all questions

Time: Two Hours

- 1. Define what is meant by a
 - metric space.
 - complete metric space.
 - (a) Let X be the set of all bounded sequences of real numbers. Define $d: X \times X \to \mathbb{R}$ by

$$d(x,y) = \sum_{i=1}^{\infty} \frac{|x_i - y_i|}{2^i}$$

where $x = \{x_i\}$ and $y = \{y_i\}$ are two arbitrary elements of X. Show that (X, d) is a metric space.

(b) Define what is meant by a *Cauchy* sequence in a metric space. Let X be the set of all positive integers. Define $d: X \times X \to \mathbb{R}$ by

$$d(m,n) = \left|\frac{1}{m} - \frac{1}{n}\right|.$$

Show that (X, d) is a metric space but not complete. Find the distance between the points (1, 1, 1, ...) and (2, 2, 2, ...).

1

- 2. (a) Let (X, d) be a metric space and let A be a subset of X. Define what is meant by
 - interior A° of A.
 - closure \overline{A} of A.
 - i. Prove that A° is the largest open set contained in A and that \overline{A} is the smaller closed set containing A.
 - ii. Is it true that, arbitrary union of closed sets is closed? Justify your answer
 - (b) Define the following terms as applied to subsets of a metric space:
 - separated;
 - disconnected.
 - i. Prove that two open subsets of a metric space are separated if and only they are disjoint.
 - ii. Prove that a metric space (X, d) is disconnected if and only if there exists nonempty proper subset of X which is both open and closed.
 - 3. Define the term *compact* as applied to subsets of a metric space.
 - (a) Show that [a, b] is a compact subset of \mathbb{R} with respect to the usual metric.
 - (b) Let A be a compact subset of a metric space (X, d) and let $a \in X \setminus A$. Prove the there exist open sets G and H such that $a \in G$, $A \subseteq H$ and $G \cap H = \phi$. Hence show that any compact subset of X is closed.
 - 4. Define what is meant by a *continuous function* between two metric spaces.
 - (a) Let (X, d_1) and (Y, d_2) be any two metric spaces, and $f : X \to Y$ be a function Prove that f is continuous at $a \in X$ if and only if for every sequence $\{a_n\}$ in converging to a implies that $\{f(a_n)\}$ converges to f(a).
 - (b) Let (X, d₁) and (Y, d₂) be any two metric spaces, and f : X → Y be a function Prove that f is continuous if and only if f⁻¹(G) is open in X whenever G is open in Y.

(c) Prove that f: X → Y is continuous if and only if f⁻¹(B°) ⊆ (f⁻¹(B))°.
(d) Let f: ℝ² → ℝ be defined by

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0); \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

where \mathbb{R}^2 and \mathbb{R} are considered with respect to the usual metric. Discuss the continuity at the origin.

TAL