SECOND SEMESTER (PROPER/REPEAT)

(April 2012)
 PH 102 PHYSICAL OPTICS I

Time: 01 hour.
Answer ALL Questions

1. When two monochromatic light beams of wavelength λ, intensities I_{1} and I_{2} and phase difference δ are interfered at any point P in space, the resultant intensity distribution at point P is given by

$$
\begin{equation*}
I_{P}=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \delta . \tag{1}
\end{equation*}
$$

(i) Assuming the intensity through each slit is I, show that for Young's double slit experiment, equation (1) may be expressed as $I_{P}=4 I \cos ^{2}\left(\frac{\pi x d}{\lambda D}\right)$; where d is the slit separation, D is the distance from the slit to observation screen, and x is the distance from the central fringe to any given fringe.
(ii) Hence, obtain the conditions for bright and dark fringes and show that the fringe width is same and given by $\frac{D \lambda}{d}$.
(iii) In a Young's Double Slit Experiment, two straight and parallel narrow slits are illuminated by a monochromatic light of wavelength $5900 \AA$. Fringes are observed on a screen distanced $D=0.60 \mathrm{~m}$ from the double slit, and measured to have fringe width 0.12 mm . Find,
a) the separation between the double slits d;
b) the distance between the $2^{\text {nd }}$ and $9^{\text {th }}$ order bright fringes.
2. Figure 1 shows a part of a transparent wedge film of smal inclination, which may be used to obtain two mutually coherent monochromatic light beams 1 and 2 by the methodo division of amplitude, in order to observe interference fringes The phase difference between the two beams are given $b y$ $\delta=\frac{2 \pi}{\lambda} 2 \mu d \cos \theta \pm \pi$, where " + " is when $\mu<\mu_{1}$ and " - " is whe: $\mu>\mu_{1}$.

Figure 1
(i) Distinguish 'fringes of constant thickness' from 'fringes of equal inclination' observed in interference by division of amplitude, and write the equations governing the condition $\delta=2 \pi m$ for $m^{\text {th }}$ order bright for the two types of fringes.
(ii) A film of oil (optically denser than glass) is place between a convex glass lens and a flat glass plate in a Newton's Rings arrangement.
a) Obtain an expression for $\mathrm{n}^{\text {th }}$ order bright fringe of constant thickness.
b) The radius of curvature of surface of the lens that is in contact with the liquid is 1 m . If the diameter of the $7^{7 \mathrm{th}}$ order bright fringe is measured to be 3.25 mm using light of wavelength $6000 \AA$, then find the refractive index of the liquid.

