27 OCT 2017

EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS
THIRD YEAR EXAMINATION IN SCIENCE - 2013/2014 SECOND SEMESTER (June,2016)
AM 307-CLASSICAL MECHANICS SPECIAL REPEAT

1. Two frames of reference S and S^{\prime} have a common origin O and S^{\prime} rotates with an constant angular velocity $\underline{\omega}$ relative to S. If a moving particle P has its position vector as \underline{r} relative to O at time t, show that :
(a) $\frac{d \underline{r}}{d t}=\frac{\partial r}{\partial t}+\underline{\omega} \wedge \underline{r}$, and
(b) $\frac{d^{2} r}{d t^{2}}=\frac{\partial^{2} r}{\partial t^{2}}+2 \underline{\omega} \wedge \frac{\partial \underline{r}}{\partial t}+\frac{\partial \underline{\omega}}{\partial t} \wedge \underline{r}+\underline{\omega} \wedge(\underline{\omega} \wedge \underline{r})$.

An object is thrown downward with an initial speed v_{0}. Prove that after time t the object is deflected east of the vertical by the amount

$$
\omega v_{0} \sin \lambda t^{2}+\frac{1}{3} \omega g \sin \lambda t^{3}
$$

where λ is the earth's co - latitude.
2. (a) With the usual notations, obtain the equations of motion for a system particles in the following forms:
i. $M \underline{f}_{G}=\sum_{i=1}^{N} \underline{E}_{i}$,
ii. $\frac{d \underline{H}}{d t}=\sum_{i=1}^{N} \underline{r}_{i} \wedge \underline{F}_{i}$,
where $\sum_{i=1}^{N} \underline{h}_{i}=\underline{H}$ and $\underline{h}_{i}=\underline{r}_{i} \wedge m_{i} \underline{u}_{i}$.
(State clearly the results that you may use)
(b) A solid of mass M is in the form of a tetrahedron $O X Y Z$, the edges $O X, O$ of which are mutually perpendicular, rests with $X O Y$ on a fixed smooth izontal plane and $Y O Z$ against a smooth vertical wall. The normal t rough face $X Y Z$ is in the direction of a unit vector \underline{n}. A heavy uniform sp of mass m and center C rolls down the face causing the tetrahedron to ac a velocity $-V \underline{j}$ where \underline{j} is the unit vector along $O Y$ If $\overrightarrow{O C}=\underline{r}$, then prove that

$$
(M+m) V-m \dot{\underline{r}} \cdot \underline{j}=\mathrm{constant}
$$

and that

$$
\frac{7}{5} \ddot{r}=\underline{f}-\underline{n}(\underline{n} \cdot \underline{f}),
$$

where $\underline{f}=\underline{g}+\dot{V} \underline{j}$ and \underline{g} is the acceleration of gravity.
3. With the usual notation obtain the Euler's equations for the motion of the body, having a point fixed, in the form:

$$
\begin{align*}
& A \omega_{1}-(B-C) \omega_{2} \omega_{3}=N_{1} \\
& B \omega_{2}-(C-A) \omega_{1} \omega_{3}=N_{2} \tag{}\\
& C \omega_{3}-(A-B) \omega_{1} \omega_{2}=N_{3}
\end{align*}
$$

A body moves about a point O under no forces. The principle moment of in at O being $3 \mathrm{~A}, 5 \mathrm{~A}$ and 6 A . Initially the angular velocity has components ω_{1} $\omega_{2}=0, \omega_{3}=3$ about the corresponding principal axes. Show that at time t,

$$
\omega_{2}=\frac{3 n}{\sqrt{5}} \tan \left(\frac{n t}{\sqrt{5}}\right) .
$$

4. Obtain the Lagrange's equations of motion using D'Alembert's principle for a conservative holonomic dynamical system.

A sphere of mass M and radius R rolls without slipping down the inclined plane of a wedge shaped block of mass m that is free to move on a frictionless horizontal surface.
(a) Find the Lagrange's equations for this system subject to the force of gravity at the surface of the earth, given that all objects are initially at rest and the center of the sphere is at a distance H above the surface.
(b) Find the motion of the system by integrating Lagrange's equations.
5. (a) Define Hamiltonian function in terms of Lagrangian function .

Show that, with the usual notations, that the Hamiltonian equations are given by

$$
\dot{q}_{j}=\frac{\partial H}{\partial p_{j}}, \dot{p}_{j}=-\frac{\partial H}{\partial q_{j}} \text { and } \frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t} .
$$

(b) Prove that if the time t does not occur in Lagrangian function L, then the Hamiltonian function H is also not involved in t.
(c) Write down the Hamiltonian function H and then find the equation of motion for a simple pendulum.
6. (a) Define the poisson bracket.

Show that for any function $f\left(q_{i}, p_{i}, t\right)$,

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+[f, H]
$$

where H is a Hamiltonian function.
(b) With the usual notations, prove that:
i. $\frac{\partial}{\partial t}[f, g]=\left[\frac{\partial f}{\partial t}, g\right]+\left[f, \frac{\partial g}{\partial t}\right] ;$
ii. $\left[f, q_{k}\right]=-\frac{\partial f}{\partial p_{k}}$;
iii. $\left[f, p_{k}\right]=\frac{\partial f}{\partial q_{k}}$.
(c) Show that, if F and g are constant of motion then their poisson bracket $[f, g]$ is a constant of motion.

