EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE - 2014/2015

SECOND SEMESTER (SPECIAL REPEAT)

(June/July 2016)

PH 304 CONDENSED STATE PHYSICS OCT 2017

ne: 01 hour.
swer ALL Questions

1. Explain the concept of "Bravias Lattice" and "Basis" in describing a periodic crystal structure.

Give a sketch of diamond structure to illustrate the atomic positions. Identify the Bravias lattice and the basis that generate the diamond crystal structure.

Silicon has a diamond structure with lattice parameter $a=5.43 \AA$. Calculate the number of atoms per cubic centimetre. If the atomic mass of silicon is 28.1 a.m.u., find the density of silicon. (1a.m.u. $=1.66 \times 10^{-27}$ kg).
2. Show that for a the unit cell having lattice parameters (a, b, c), the separation of the planes corresponding to the Miller indices ($h k l$) is given by

$$
d_{h k l}=\left[\left(\frac{h}{a}\right)^{2}+\left(\frac{k}{b}\right)^{2}+\left(\frac{l}{c}\right)^{2}\right]^{-\frac{1}{2}} .
$$

Briefly describe the Bragg's diffraction in crystals and show that the Bragg condition for crystal diffraction on (hkl) planes is given by:

$$
2 d_{h k l} \sin \theta_{h k l}=n \lambda
$$

Where the symbols have their usual meanings.

Identify the crystal planes given by Miller indices (111), (220) and and determine their Bragg angles for Germanium which has at structure with lattice parameter $5.65 A^{\circ}$ using "Copper $K_{a}{ }^{n}$ " X-raj wavelength $\lambda=0.154 \mathrm{~nm}$.

