EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

THIRD EXAMINATION IN SCIENCE $(2013 / 2014)$ SECOND SEMESTER (June' 2016) CT 2017 PM 301 - GROUP THEORY

Special Repeat

Answer all questions
Time: Three hours

1. (a) Definc the following terms
i. group;
ii. cyclic group;

Prove that every subgroup of a cyclic group is cyclic.
Is the converse part true? Justify your answer.
(b) State and prove Lagrange's theorem.
i. In a group G, H and K are different subgroups of order p, p is prime. Show that $I \cap K=\{e\}$, where e is the identity element of G.
ii. Prove that in a finite group G, the order of each element divides order of G. Hence prove that $x^{|G|}=e, \forall x \in G$.
2. (a) What is meant by saying that a subgroup of a group is normal?
i. Let H and K be two normal subgroups of a group G. Prove that $H \cap K$ is a normal subgroup of G.
ii. Prove that every subgroup of an abelian group G is a normal subgroup of G.
(b) With usual notations prove that
i. $N(H) \leq G$;
ii. $H \unlhd N(H)$.
(c) Let $Z(G)=\{x \in G \mid x g=g x, \forall g \in G\}$. Prove the following
i. $Z(G)=\bigcap_{a \in G} C(a)$, where $C(a)=\{g \in G: g a=a g\}$
ii. $Z(G) \unlhd G$.
3. (a) Define what is meant by two groups are isomorphic.

Let $G=\left\{\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right): a \in \mathbb{R}\right\}$ be a group under the matrix multiplication. Prove that
i. the mapping $\phi: G \rightarrow(\mathbb{R},+)$ defined by $\phi\left(\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)\right)=$ is a homomorphism.
ii. G isomorphic to \mathbb{R}.
(b) State the first isomorphism theorem.

Let H and K be two normal subgroups of a group G such the $K \subseteq H$. Prove the following
i. $K \unlhd H$;
ii. $H / K \unlhd G / K$;
iii. $\frac{G / K}{H / K} \cong G / H$.
4. (a) Define commutator subgroup G^{\prime} of a group G.

Prove that the following
i. $G^{\prime} \unlhd G$;
ii. G / G^{\prime} is abelian.
(b) Let $H \unlhd G, P=\{K \leq G: H \subseteq K\}$ and $Q=\left\{K^{\prime}\right\}^{\prime}: K^{\prime} \leq G / H$ Prove that there exists a one to one correspondence between P Q.
5. (a) What is meant by the internal direct product as applied to a group. Is it true that all the groups satisfy the internal direct product property? Justify your answer.

Let H and K be two subgroups of a group G, prove that G is a direct product of H and K if and only if
i. each $x \in G$ can be uniquely expressed in the form $x=h k$, where $h \in H, k \in K$.
ii. $h k=k h$ for any $h \in H, k \in K$.
(b) Define the term $p-$ group.

Let G be a finite abelian group and let p be a prime number which divides the order of G. Prove that G has an element of order p.
6. (a) Define the following terms as applied to a permutation group.
i. cycle of order r;
ii. transposition;
iii. signature.
(b) Prove that every permutation in S_{n} can be expressed as a product of transpositions.
(c) Prove that the set of all even permutations, A_{n} forms a normal subgroup of S_{n} and $\left|A_{n}\right|=\frac{n!}{2}$.
(State any results you may use without proof)
(d) i. find out wether the following permutation in S_{8} is odd or even

$$
\sigma=(1,2,8,4)(4,3,2)(5,7)(1,4,2,3)
$$

ii. express σ as a product of disjoint cycles.

