

Eastern University, Sri Lanka

Third Examination in Science

Special Degree in Chemistry-2011/2012(2016)

CHS01-Inorganic Chemistry-I

Answer	all	an	06	tic	ne
Answer	an	qu	63	u	mo

Time: Two hours

- a) With or without the aid of a flow chart, identify the point groups of the following molecules.
 - i) ethane (staggered)
 - ii) SiH₃I
 - iii) fac-Co(NH₃)₃Cl₃
 - iv) I3 (liner)

(20 marks)

b) "Symmetry operation C_2 commutes with Symmetry operation σ_v for H_2O molecule" Explain this statement.

(20 marks)

c) What are the symmetry operations in the point group C_{3v} ? Identify a molecule that belongs to this group. By examining the effect of sequential application of the various symmetry operations in the group, construct the group multiplication table for the point group C_{3v} .

(20 marks)

Contd...

d) i) Define the term "irreducible representations (IRs)"

ii) The following is the charter table for Td point group.

T_d	Е	8C ₃	3C ₂	6S ₄	$6\sigma_{\mathrm{d}}$	linear functions, rotations	quadratic functions
A_1	+1	+1	+1	+1	+1	- 2	$x^2+y^2+z^2$
A_2	+1	+1	+1	-1	-1	-	· 114
E	+2	-1	+2	0	0	-	$(2z^2-x^2-y^2, x^2-y^2)$
T_1	+3	0	-1	+1	-1	(R_x, R_y, R_z)	-
T_2	+3	0	-1	-1	+1	(x, y, z)	(xy, xz, yz)
Γ_{R}	7	1	3	-1	1		

- I) Write down the meaning of all the symbols seen in column 1 (under Td)
- II) Decompose the reducible representation Γ_R into irreducible representations using the relevant formula.

- 2 a) Briefly explain the following;
 - i) Russel-Saunders coupling
 - ii) Hund's rules to determine the ground state term of a free ion

b) Determine the Russell-Saunders ground state term for each of the following ions

(30 mar

c) Write the term symbols (Russell-Saunders coupling) for the electron configuration: 2s

(30 mar

3 a) What is Orgel energy diagram? Draw the combined Orgel energy level diagram for d^3 configuration in octahedral and tetrahedral field.

(30 marks)

- b) Answer the following questions about electronic spectroscopy of the transition metal complexes.
 - i) Explain why the Laporte selection rule is often relaxed (partially violated) in real complexes.
 - ii) Explain why the molar absorptivity of the peaks in the absorption bands in the visible region of $[Co(H_2O)_6]^{2+}$ is 10 L mol^{-1} cm $^{-1}$ while that for $[CoCl_4]^{2-}$ is 600 Lmol⁻¹ cm⁻¹.

(40 marks)

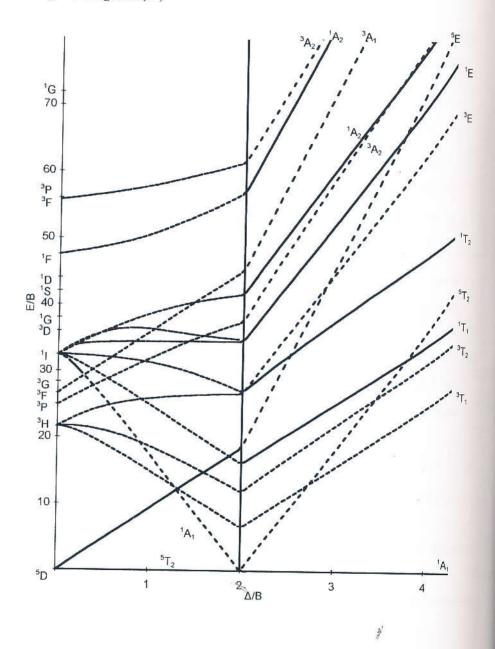
c) What do you understand by the term, Jahn-Teller distortion? Explain the z-out and z-in phenomena with examples

(30 marks)

- 4 a) Consider the electronic structure of the complexes $[Fe(CN)_6]^{4-}$ and $[Fe(OH_2)_6]^{2+}$ to answer the following (Note: you should use Tanabe-Sugano diagram provided at the end of this exam paper)
 - i) What is the ground term for ${\rm [Fe(CN)_6]}^{4-}$ and for ${\rm [Fe(OH_2)_6]}^{2+}$
 - ii) Which transitions are spin allowed for $[Fe(CN)_6]^{4-}$ and for $[Fe(OH_2)_6]^{2+}$.

(40 marks)

b) Briefly explain the "Symbiotic theory for linkage isomers"


(20 marks)

- c) Explain how the following factors influence the structure determination of linkage isomers
 - i) Effect of π -bonding
 - ii) Steric effects on linkage isomers

(40 marks)

Contd...

Tanabe-Sugano diagram (d⁶)

End of paper