EASTERN UNIVERSITY, SRII LANKA

FACULTY OF COMMERCE AND MANAGEMENT
Year First Semester Examination in Bachelor of Commerce (Specialization in Accounting and Finance)-2014/2015(May 2017) (Proper)

DAF 4043 Portfolio Investment Analysis

Describe how investment funds, pension funds and life insurance companies mach act as financial intermediaries.
(05 Marks)
The investment management process describes how an investor should go about naking decisions. Investment management process can be disclosed by fivestep procedure. Briefly explain the steps.
(05 Marks)

Distinguish between financial investment and real investment.
(05 Marks)
What factors might an individual investor take into account in determining his/her investment policy?
(05 Marks)
(Total 25 Marks)
02. (I) Describe the different types of returns.
(II) What is the use of Coefficient of Variation in investment decision? If two assst and Y, are said to have expected returns of 10% and 15% and standard derifen of returns of 5% and 12% respectively, which asset shall be seledes investment?
(O4) 112
(III) Calculate the Expected Rate of Return and the Standard Deviation of the Retr for an asset which has the following possible returns with associated probatifit

Possible Returns (\%)	22	12	18	00	-05	14	03	$\cdot 2)$
Probabilities	0.05	0.16	0.24	0.10	0.15	0.10	0.14	0.68

(04 Mar
(IV) Securities P, Q and R have the following characteristics:

Probability	Possible Return (\%)		
	Security P	Security Q	Security R
0.20	-21	13	10
0.50	06	17	12
0.30	31	-12	15

Required:

Calculate the following:
(a) The Co-Variance between returns of the Securities.
(b) The Correlation Coefficients between returns of the Securities
(c) The Expected Rate of Return and the Standard deviation of the returns the portfolio of securities P, Q and R, combined with equal weights.
ithe risk-free rate of return is 7.5% and the return on the market portfolio is 12.5%, what is the expected return on an asset having a Beta of 1.75 , acoording to the CAPM?

The following investment portfolios are evaluated by an investor:

Portfolio	$\mathrm{E}\left(\mathrm{R}_{\mathrm{P}}\right)(\%)$	$\sigma_{P}(\%)$
A	16	20
B	12	12
C	12	13

Using Markowitz portfolio theory, explain the choice for the investor between porfolios A, B and C .

An investor owns the portfolio composed of four securities. The Betas of these securities and the investments on them are shown below. What is the Beta of the investor's portfolio?

Securities	Beta	Investment in Portfolio (Rs.)
A	0.8	300,000
B	1.2	450,000
C	-0.9	150,000
D	-1.0	100,000

(05 Marks)
(IV) From the following information, find out the minimum risk portfolio:

$$
\begin{array}{ll}
\mathrm{E}\left(\mathrm{R}_{A}\right)=17 \% & \mathrm{E}\left(\mathrm{R}_{B}\right)=22 \% \\
\sigma_{A}=11 \% & \sigma_{B}=19 \%
\end{array}
$$

$$
\operatorname{Cor}_{A B}={ }^{+} 0.5
$$

(V) An Investor owns a portfolio of four securities. The characteristics of the securitiesti their proportions in the portfolio are presented below.

Security	Beta	Proportion (\%)	Expected Return (\%)
L	2.50	35	20
M	0.95	25	12
N	1.00	15	10
O	-1.25	25	15

Required:

(a) What is the expected rate of return of this portfolio?
(b) What is the risk of the portfolio?
(c) If the investor wants to reduce risk in his portfolio how he cou restructure his portfolio?
following are the annual returns of Share of N plc and the market (M) for the last par's

Year	Returns (\%)	
	\mathbf{N}	\mathbb{M}
2012	13	14
2013	16	19
2014	-03	00
2015	14	21
2016	-05	-08

ired:

Determine the beta coefficient for N
How much is (a) Total Risk, (b) Systematic Risk, and (c) Unsystematic Risk of the share of N plc.

A portfolio consists of four securities $\mathrm{A}, \mathrm{B}, \mathrm{X}$, and Y . with the following characteristics.

characteristics.	\mathbf{A}	\mathbf{B}	\mathbf{X}	\mathbf{Y}	-	-
	24	20	18	1,5		
Expected Return (\%)	24	15	13	11		
Standard Deviation (\%)	18	15	AY	BX	BY	XY
Combination	AB	AX	A			
Correlation	-0.50	+0.60	-0.20	+0.40	-0.25	+0.10

guired:
te securities are equally weighted, how much is the risk and return of the portfolios of se four securities?
(III) An investor holds an investment on the bonds of BSN plc having a par valuen Rs. 1000 each with coupon rate of 13% per annum payable semi annuallyat the maturity of 12 years.
(i) What is the value of a bond today if the market rate of return is equal to coupon rate?
(ii) What will be the value of the bond if the market interest rate increasess 15% at the end of one year?
(iii) What will be the value of the bond if the market interest rate decreasest 10% at the end of five years?
(iv) If the value of the bond is Rs. 1250 after two years from the date of issure what would be the YTM of the bond?

Table A-1 Future Value Interest Factors for One Dollar Compounded at k Percent for n Periods: $F V / F_{k, n}=(1+k)$

71 4.3839 7.1067 11.467 $18.420 \quad 29.457$ Periods: $F V / F A_{k, n}=\left[(1+k)^{n}-1\right] / k$

| 102 | 75.1 | 95.026 | 120.800 | 154.762 | 109.029 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 159 | 112.27 | 152.667 | 209.348 | 290.336 | 406.529 | 573.770 | 815.084 |

Table A－3 Present Value Interest Factors for One Dollar Discounted at k Percent for n Periods：$P V / F F_{k, n}=1 /(1+k)^{n}$

Period	1\％	2\％	3\％	4\％	5\％	6\％	7\％	8\％	9\％	10\％	14\％	12\％	13\％	14\％	15\％	16\％	20\％	24%	28	
1	0.9901	0.9804	0.9709	0.9615	0.9524	0.9434	0.9346	0.9259	0.9174	0.9091	0.9009	0．8929	0.8850	0.8772	0.8696	0.8621	0.8333	0.0565	い沙	
2	0.9603	0.9512	0.9426	0.9246	0．9070	0.8900	0.8734	0.8573	0.8417	0.8264	0.8115	0．7972	0.7831	0.7695	0.7561	0.7432	0．694	0．55）4	Uk！	
3	0．9706	0.9423	0.9151	0.8890	0.8636	0.8395	0.8163	0．7938	0.7722	0.7513	0.7312	0.7118	0.6931	0.6750	0.6575	0.6407	0.5787	0.524	1514	
4	0.9610	0.9238	0.8885	0.8548	0.8227	0.7921	0.7629	0.7350	c．7084	0.6830	0.6587	0.6355	0.6133	0.5921	0.5718	0.5523	0.4823	1230	以澵	
5	0.9515	0.5057	0.8626	0.8219	0.7835	0.7473	0.7130	0.5806	0.6499	0.6209	0.5935	0.5674	0.5428	0.5194	0.4972	0.4761	0.4019	0.3411	1 130	
6	0.9420	0.8880	0.8375	0.7903	0.7462	0.7050	0.6663	0.6302	0.5963	0.5645	0.5346	0.5055	0.4803	0.4556	0.4323	0.4104	0．3349	0.2751	1281	
7	0.9327	0.8706	0.8131	0.7599	0.7107	0.6651	0.6227	0.5835	0.5470	0.5132	0.4817	0.4523	0.4251	0.3996	0.3759	0.3538	0.2791	0.2278	2081	
8	0.9235	0.8535	0.7894	0.7307	0．6768	0，6274	0.5820	0.5403	0.5019	0.4665	0.4338	0.4039	0.3762	0.3508	0.3269	0.3050	0.2326	0.1729	4×1	
9	0.9143	0.8368	0.7664	0.7026	0.6446	0.5919	0.5439	0.5002	0.4604	0.4241	0.3509	0.3606	0.3329	0.3075	0.2843	0.2630	0.1038	0.1443	6．x	
10	0.9053	0.8203	0.7441	0.6756	0.6139	0.5584	0.5083	0.4632	0.4224	0.3855	0.3522	0.3220	0.2946	0.2697	0.2472	0.2267	0.1615	0.1164	0.105	
11	0.8963	0.8043	0.7224	0.6496	0.5847	0.5268	0.4751	0.4289	0.3875	0.3505	0.3173	0.2875	0.26007	0.2366	0.2149	0.1954	0.1346	0.0938	209	18
12	0.8874	0.7885	0.7014	0.6246	0.5568	0.4970	0.4440	0.3971	0.3555	0.3186	0.2858	0.2567	0.2307	0.2076	0.1869	0.1685	0.1122	0.0757	unt	
13	0.8787	0.7730	0.6810	0.6005	0.5303	0.4688	0.4150	0.3677	0.3262	0.2897	0.2575	0.2292	0.2042	0.1821	0.1525	0.1452	0.0935	0.0610	㞅	1
14	0.8700	0.7579	0.6611	0.5775	0.5051	0.4423	0.3878	0.3405	0.2992	0.2633	0.2320	0.2046	0.1807	0.1597	0.1413	0.125	0.077	0.0432	One 1	18
15	0.8613	0.7430	0.6419	0.5553	0.4810	0.4173	0.3624	0.3152	0.2745	0.2394	0.2090	0.1827	0.1599	0.1401	0.1229	0.1079	0.0649	0.8997	then	in
15	0.8528	0.7284	0.6232	0.5339	0.4581	0.3935	0.3387	0.2919	0.2519	0.2176	0.1883	0.1631	0.1415	0.1229	0.1069	0.0930	0.0541	0.0320	103n	ㄴㅏㅡN
17	0.8444	0.7142	0.6050	0.5134	0.43363	0.3714	0.3166	0.2703	0.2311	0.1978	0.1696	0.1456	0.1252	0.1078	0.0929	0.0802	0.0451	0.2258	tusis	4
18	0.8360	0.7002	0.5874	0.4936	0.4155	0.3503	0.2959	0.2502	0.2120	0.1799	0.1528	0.1300	0.1108	0.0946	0.0808	0.0691	0.0376	0.0208	Ons	L
19	0.8277	0.6864	0.5703	0.4746	0.3957	0.3305	0.2765	0.2317	0.1945	0.1635	0.1377	0.1161	0.0981	0.0829	0.0703	05	313	0.0168	0154	
20	0.8195	0.6730	0.5537	0.4564	0.3769	0.3118	0.2584	0.2145	0.1784	0.1486	0.1240	0.1037	0.0868	0.072	0.06	0.0514	0.0251	2013	Latis	$\underline{18}$
21	0.8114	0.6598	0.5375	0.4388	0.3589	0.2942	0.2415	0.1987	0.1637	0.1351	0.1117	0326	0.0768	0.06	0.05	． 04	0.02	0.0109	0．0er	LM
22	0.8034	0.6468	0.5219	0.4220	0.3418	0.2775	0.2257	0.1839	0.1502	0.1228	0.1007	0.0826	0.0680	0.0550	0.0462	0.0382	0.0181	0.0088	Lunt	W
23	0.7954	0.6342	0.5067	0.4057	0.3256	0.2618	0.2109	0.1703	0.1378	0.1117	0.0907	0.0738	0.0601	0.0491	0.0402	． 0329	0.0151	0.0071	ㄲus	$1{ }^{1}$
24	0.7876	0.6217	0.4919	0.3501	0.3101	0.2470	0.1971	0.1577	0.1264	0.1015	0.0817	0.0659	0.0532	0.0431	0.0349	0284	． 0122	0.0057	Oex	L14
25	0.7798	0.6095	0.4776	0.3751	0.2953	0.2330	0.1842	0.1460	0.1160	0.0923	0.0736	0.0588	0.0471	0.037	0304	0.02	0.01	0.0045	100	4
30	0.7419	0.5521	0.4120	0.3083	0.2314	0.1741	0.1314	0.0994	0.0754	0.0573	0.0437	0.0334	0.0256	0.0196	0.0151	0.0116		0.016	UW4	
35	0.7059	0.5000	0.3554	0.2534	0.1813	0.1301	0.0937	0.0876	0.0480	0.0356	0.0259	0.0189	0.0139	0.0102	0.0075	0.0055	0.0017	0．005		
36	0.6989	0.4902	0.3450	0.2437	0.1727	0.1227	0.0875	0.0626	0.0449	0.0323	0.0234	0.0169	0.0123	0.0089	0.0065	0.0048	0.0014			
40.	0.6717	0.4529	0.3066	0.2083	0.1420	0.0972	0.0668	0.0460	0.0318	0.0221	0.0154	0.0107	0.0075	0.0053	0.0037	0.0026	0.0007		．	
50	0.6080	0.3715	0.2281	0．1407	0.0872	0.0543	0.0339	0.0213	0.0134	0.0085	0.0054	0.0035	0.0022	0.0014	0.0009	0.0006	－	－	，	

Table A－4 Present Value Interest Factors for a One－Dollar Annuity Discounted at k Percent for n Periods：PVIFA $=\left[1-1 /(1+k)^{n}\right] / k$

Period	1\％	2\％	3\％	4\％	5\％	6\％	7\％	8\％	9\％	10\％	11\％	12\％	13\％	14\％	15\％	15\％	20\％	24\％	298	II
1	0.9901	0，9804	0.9709	0.9615	0.9524	0.9434	0.9346	0.9259	0.9174	0.9091	0.9009	0.8929	0.8850	0.8772	0.8695	0.8621	0.8333	0.8065	人日w 18	K
2	1.9704	1.9416	1.9135	1.8861	1.8594	1.8334	1.8080	1.7833	1.7591	1.7355	1.7125	1.6901	1，6681	1.6467	1.6257	1.6052	1.5778	1.4558	1 相	$\underline{\square}$
3	2.9410	2.8839	2.8286	2.7751	2.7232	2.6730	2.6243	2.5771	2.5313	2.4869	2.4437	2.4018	2.3612	2.3216	2.2832	2.2459	2.1085	1.9813	1985	$\underline{\square}$
4	3.9020	3.8077	3.7171	3.6299	3.5480	3.4651	3.3872	3.3121	3.2397	3.1699	3.1024	3.0373	2.9745	2.9137	2.8550	2.7982	2.5887	2.4043	2341	Ix
5	4.8534	4.7135	4.5797	4.4518	4.3295	4.2124	4.1002	3.9927	3.8897	3.7908	3.6959	3.6048	3.5172	3.4331	3.3522	3.2743	2.9906	2.7454	280	18
6				5.2421	5.0757	9173	4.7655	4.6229	4.4859	4.3553	4.2305	4.1114	3.9975	3．8887	3.7845	3.8847	3.3255	3.0205	2954	$\underline{4}$
7	6.7282	6.4720	6.2303	6.0021	5.7864	5.5824	5.3893	5.2064	5.0330	4.8684	4.7122	4．5638	4.4226	4.2883	4.1604	4.0386	3.6045	3.2423	21611	$\underline{10}$
8	7.6517	7.3255	7.0197	6.7327	6．4632	6.2098	5.9713	5.7466	5.5348	5.3349	5.1461	4.9676	4.7988	4.6389	4.4873	4.3436	3.8372	3.4212	323	wr
9	8.5660	8.1622	7.7861	7.4353	7.1078	6.8017	6.5152	6.2469	5.9952	5.7590	5.5370	5.3282	5.1317	4.9464	4.7716	4.6065	4.0310	3.5655	2.48	in
10	9.4713	8.9826	8.5302	8.1109	7.7217	7.3601	7.0236	6.7101	6.4177	6.1446	5.8892	5.6502	5.4262	5.2161	5.0188	4.8332	4.1925	3.6819	198	$\underline{1}$
						7．88		7.13	6.8052	6.4951	6.2065	5.9377	5.6869	5．45527，	5．2337	5.0286	4.3271	775	1354	结
12	11.255	10	9.9540	9.3851	8.9633	8.3838	7.9427	7.5361	7.1607	6.8137	6．4．4224	6.1944	5.9176	5．6603	5.4206	5.1971	4.4392	3.8514	2781	$\underline{19}$
13	12.134	11.348	10.635	9．9856	9.3936	8.8527	8.3577	7.9038	7.4869	7.1034	6.7499	6.4235	6.1218	5.8424	5.5831	5.3423	4.3327	3.9124	$1{ }^{1} \times 1$	$\underline{12}$
14	13.004	12.106	11.296	10.563	9.8986	9.2950	8.7455	8．2442	7.7862	7.3667	6.9819	6.6282	6.3025	6.0021	5.7245	5.4675	4.6106	3.9616	1241	$\underline{1}$
15	13.865	12.849	11.938	11．118	10.380	9.7122	9.1079	8.5595	8.0607	7.6061	7.1909	6．8109	6.4624	6，1422	5.8474	5.5755	4.6755	4.0013	13s）	边
						10．10	9.4466	8.8514	8.3126	7.8237	7.3792	6.9740	6.8039	6.2651	5.9542	5．6685	4.7296	4．0333	1854	II
17	15.562	14.292	13.165	12.166	11.274	10.477	9.7632	9.1216	8.5436	8.0216	7.5488	7.1196	6.7291	6.3729	6.0472	5.7487	4.7746	4.0591	1．30	13
18	16.398	14.992	13.754	12.659	11.690	10.828	10.059	9.3719	8.7556	8.2014	7.7016	7.2497	6.8399	6.4674	8.1280	5.8178	4.8122	4.0798	1327	$\underline{11}$
19	17.226	15.678	14.324	13.134	12.085	11.158	10．336	9.6036	8.9501	8.3549	7.8393	7.3658	6.9380	6.5504	6，1982	5.8775	4.8435	4.0967	198	$\stackrel{1}{4}$
20	18.046	16.351	14.877	13.590	12.462	11.470	10.594	9.6181	9.1285	8． 5136	7.9633	7.4694	7.0248	6.6231	6.2593	5.9288	4.8696	4.1103	1959	12
												8								
21	18.857	17.011	15.415	14.029	12.821	11.764	10.836	10.017	9.2922	8.6487	8.0751	7.5620	7.1010	6.6870	6.3125	5.9731	4.8913	4.1212	3989	11
22	19.650	17.658	15.937	14.451	13.163	12.042	11.051	10.201	9，4424	8.7715	8.1757	7.6446	7.1695	6.7429	6.3587	6.0113	4.9094	4.1300	1975	11
23	20.456	18.292	16.444	14.857	13.489	12.303	11.272	10.371	9.5802	8.8832	8.2654	7.7184	7.2297	6.7921	6.3988	6.0442	4.9245	4.1371	374	1
24	21.243	18.914	16.936	15.247	13.799	12.550	11.469	10.529	9.7056	8.9847	8.3481	7.7843	7.2829	6.8351	6.4338	6．7726	4.9371	4.1428	3941	
25	22.023	19.523	17.413	15.622	14.094	12.783	11.654	10．675	9.8226	9.0770	8.4217	7．8431	7.3300	6.8729	6.4641	6：0971	4.9476	4.1474	330	
							12	11.25	10.274	9.4269	8．6938	8，0552	7.4957	7.0027	6.5660	6.1772	4.9789	4.1601	3998	
			88	18.665	16.374	14.498	12.948	11．2585	10.567	9.6442	0．8552	8.1755	7．5856	7.0700	6.8166	6.2153	4.9915	4.1644	1． S M	
36	30.108	25.489	21.832	18.908	16.547	14.621	13.035	11.717	10.612	9.6765	8．8786	8.1924	7.5979	7.0790	6.6231	6.2201	4.5929	4.1649	3998	
40	32.835	27.355	23.115	19.793	17.159	15.046	13.332	11.925	10.757	9.7791	8，9511	8.2438	7.6344	7.1050	6.6418	5.2335	4.9956	4.1659	3930	
50	39.196	31.424	25.730	21.482	18.256	15.762	13.801	12.233	10.962	9.9148	9.0417	8.3045	7.6752	7.1327	6.6605	6.2463	4.9995	4.1665	30\％	

