Eastern University, Sri Lanka
Third Examination in Science $\quad 27$ OCT 2017
Special degree Examination in Chemistry -2012/2013
CHS 03 Physical Chemistry -I

Answer all questions
Time: 02 hours

Velocity of Light $(\mathrm{c})=2.99 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ Planck's constant $(\mathrm{h})=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Boltzmann's constant $(\mathrm{k})=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$ Mass of electron $\left(\mathrm{m}_{\mathrm{e}}\right)=9.1 \times 10^{-31} \mathrm{~kg}$
Gas constant $(\mathrm{R})=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

1. a) i) For a dilute solutions, show that the depression of boiling point (ΔT) between the solvent vapour and solvent in solution in terms of molality of the solution is,

$$
\Delta T=\left(\frac{R T^{0^{2}} M}{\Delta H_{v a p}}\right) m_{B}
$$

where M is the molecular weight of the solvent, m_{B} is the molality of the solution and other symbols have their usual meanings
(20 marks)
ii) The osmotic pressure of a solution of hormone adrenaline in CCl_{4} at 30 ${ }^{\circ} \mathrm{C}$ is 120 kPa . Calculate the boiling point elevation of the solution. Boiling point elevation coefficient $\left(k_{b}\right)$ and density of CCl_{4} are 4.68° $C \mathrm{~kg} \mathrm{~mol}^{-1}$ and $1465 \mathrm{~kg} \mathrm{~m}^{-3}$ respectively. [Use Van't Hoff equation]
b) i) Show that the Gibbs energy change of mixing $\left(\Delta_{\text {mix }} G\right)$ of two perfect gases A and B in amounts of n_{A} and n_{B} at temperature T is,

$$
\Delta_{m i x} G=n R T\left(x_{A} \ln x_{A+} x_{B} \ln x_{B}\right)
$$

where x_{A} and x_{B} are mole fraction of gases A and B in the mixture, respectively.
(15 marks)
Contd.
ii) A container is divided into two compartments. One contains 3 moles 0 H_{2} gas at 1.5 atm and $25^{\circ} \mathrm{C}$, the other contains 2 moles N_{2} gas at 3 atn and $25^{\circ} \mathrm{C}$. Calculate $\Delta_{m i x} G$ when the partition is removed.
2.
a)

The quantum mechanical energy levels ϵ_{n} and degeneracies $g_{n} 0$ doubly-degenerate bending vibration are given within the harmonic normal mode approximation by $\epsilon_{n}=(n+1) h \vee$ and $g_{n}=(n+1)$ where $n=0,1,2, \ldots \ldots \ldots$
i) Write the expression for molecular partition function (q)
ii) Show that the sum of the molecular partition function

$$
q=e^{-\beta h v}\left(1-e^{-\beta h v}\right)^{-2}
$$

[Use the fact that $1+2 x+3 x^{2}+\ldots \ldots=(1-x)^{-2}$ for $x<1$]
iii) Compare your result obtained in (ii) with the partition function of a non-degenerate oscillator, $q=e^{-\beta h v / 2}\left(1-e^{-\beta h v}\right)^{-1}$
iv) Show that the contribution to the average energy per molecule in a system of N non-interacting molecules is,

$$
\frac{E}{N}=-\frac{1}{q} \frac{d q}{d \beta}
$$

v) Show that, for a doubly-degenerate oscillator,

$$
\frac{E}{N}=\hbar v\left[1+\frac{2 e^{-\beta h v}}{1-e^{-\beta h v}}\right]
$$

(80 marks)
b) The first electronically excited state of $O_{2}{ }^{1} \Delta_{g}$ (doubly degenerate) lies $7918 \mathrm{~cm}^{-1}$ above the ground sate, which is ${ }^{3} \Sigma_{g}$ (triply degenerate). Calculate the electronic contribution to the molar Gibbs energy of O_{2} at 400 K . Use the relation $G_{m}-G_{m}^{(0)}=-R T \ln q$.

Using the first order perturbation theory, the real wave function could be written in the form $\psi_{n, \text { real }}=\psi_{n}^{(0)}+\sum_{m} a_{m} \psi_{m}^{(0)}$ where $\psi_{n}^{(0)}$ and $\psi_{m}^{(0)}$ are ideal wave functions and a_{m} is $m^{\text {th }}$ expansion coefficient for the perturbation to the $n^{\text {th }}$ real wave function
i) Write an expression for the expansion coefficient a_{m}
ii) Electrons in the bond CN^{-}act as a particle in a 1-D box that has a slightly higher potential energy on one side than the other. Assume a first order perturbation Hamiltonian $\hat{\mathrm{H}}=k x^{2}$ for the ground state wave function ψ_{1} of a particle in a box system and the correction to the real ground state wave function is the second particle in a box of wave function ψ_{2}.
The wave function of particle in a box is $\psi_{n}=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right)$.
Calculate the expansion coefficient $\left(a_{2}\right)$ and hence show that the first order corrected wave function $\left(\psi_{1, \text { real }}\right)$ is,

$$
\psi_{1, \text { real }}=\psi_{1}+\left(\frac{128 k m a^{4}}{27 \pi^{2} h^{2}}\right) \psi_{2}
$$

$[\sin a x \cdot \sin b x=1 / 2[\cos (a-b) x-\cos (a+b) x]$

$$
\left[\int x^{2} \cos a x d x=\left(\frac{2 x}{a^{2}}\right) \cos a x+\left(\frac{a^{2} x^{2}-2}{a^{3}}\right) \sin a x\right]
$$

(100 marks)
a) i) Write the expression which relates the variation of fugacity with pressure at constant temperature.
ii) For a gas that obeys the equation of state $P V_{m}=R T+b P-\frac{a P}{T}$, show that

$$
\ln \gamma=(b-a / T) P / R T
$$

where γ is the fugacity coefficient and a and b are constants.
(50 marks)
b) i) Write the expression of rotational partition function ($q_{\text {rot }}$) for nonlinear asymmetric top polyatomic molecule XYZ.

Contd.
ii) Hence show $q_{\text {rot }}=\frac{1}{\sigma}\left(\frac{K T}{h C}\right)^{3 / 2}\left(\frac{\pi}{B_{X} B_{Y} B_{Z}}\right)^{1 / 2}$, where B_{X}, B_{Y} and B_{Z} are rotational constants of atoms X, Y and Z respectively.
[Rotational constant $B=h / 8 \pi^{2} I C$]
iii) The NOF molecule is a nonlinear molecule with rotational constan $3.1752 \mathrm{~cm}^{-1}, 0.3951 \mathrm{~cm}^{-1}$ and $0.3505 \mathrm{~cm}^{-1}$. Calculate the rotationa partition function of the molecule at $298 \mathrm{~K}(\sigma=1)$

