EASTERN UNIVERSITY, SRI LANKA

THIRD EXAMINATION IN SCIENCE -2012/2013

FIRST SEMESTER (May /June., 2016)

CS 301 - COMPUTER GRAPHICS

(PROPER AND REPEAT)

) What is meant by computer graphics?
(1) Define the following terms:
a) Raster scan display;
b) Random scan display;
c) Modeling co-ordinate;
d) Normalized co-ordinates.
7) Derive the equations of Bresenham's line drawing algorithm with slope less than one.
i) Consider the Midpoint circle algorithm:
a) Derive the necessary equations to generate Midpoint circle algorithm.
b) Get all the pixel co-ordinates to draw the first quarter of the circle of radius, $\mathrm{r}=6$ with center (3, 2). (Apply this algorithm)

Q2) The basic two dimensional transformations in Computer graphics are tra scaling, shearing, and rotation. A point in a two dimensional co-ordinate sys be represented in homogeneous co-ordinate system.
i) Explain the use of homogeneous co-ordinate system in transformations.
ii) Consider the Cartesian co-ordinate system. Let $A\left(x_{0}, y_{0}\right), B\left(x^{\prime}, y^{\prime}\right)$ and $C(x, y)$ three points on this co-ordinate system. The point $C(x, y)$ is obtained by the point $\mathrm{B}\left(\mathrm{x}^{\prime}, y^{\prime}\right)$ by an angle β with respect to the point $\mathrm{A}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$. Write thefin for co-ordinates x and y.

iii) Give the corresponding matrices (in homogeneous system) for each following two dimensional transformations in computer graphics:
a) Translation;
b) Scaling about pivot point;
c) Shearing in x-direction.
iv) Consider the figures:

Describe how you would draw the compound object from the primitive object. Give all the transformations needed in each step.

Consider the following two figures (i) and (ii), where $A B C D$ and $P Q R S$ are two rectangles, where $P S=2 A D$ and $P Q=2.2 A B$.

Figure (i)

Figure(ii)

Obtain the matrix to transform $A B C D$ into $P Q R S$.

Define the graphics terms View port, Window and Clipping in your own words:

Write down the steps of two- dimensional viewing transformation pipeline.

List out the types of Clipping.

Briefly explain the Cohen-Sutherland line clipping algorithm.

Let W be a window whose bottom-left corner is $(75,70)$ and the top right corner is $(150,180)$ and $A B$ and $C D$ are straight lines with $A=(60,80), B=(120,150), C=$ $(45,100)$ and $D=(155,170)$. Apply the above algorithm to clip $A B$ and $C D$ against window W .
i) Give the equation for three Dimensional (3D) rotations about $z-a x i s$ by anaz Deduce the equation for rotation about x-axis and y-axis from the equations
ii) Write down the Reflection matrices for the following cases:
a) Reflection with respect to the line $y=x$;
b) Reflection with respect to the line $y=-x$;
c) Reflection about an axis perpendicular to the xy plane;
d) Reflection about y-axis.
iii) Reflect the diamond shape polygon whose vertices are $P(3,4), Q(1,1)$ and about:
a) The horizontal line $y=2$;
b) The horizontal line $y=5$;
c) The vertical line $x=3$;
d) The vertical line $x=5$;
e) The line $\mathrm{y}=\mathrm{x}+2$.

