EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE - 2013/2014 FIRST SEMESTER (May/June, 2016) PM 304 - GENERAL TOPOLOGY Proper and Repeat

wer all questions

Time: Two hours

- (a) Define what is meant by the term topological space.
 - i. Let $f: X \to Y$ be a function from a non-empty set X into a topological space (Y, τ) . Let $\sigma = \{f^{-1}(G) : G \in \tau\}$ be the class of inverses of open subsets of Y. Show that σ is a topology on X.
 - ii. Let τ be the class consisting of the set of all real numbers \mathbb{R} , empty set ϕ and all open infinite intervals $A_n = (n, \infty)$ with $n \in \mathbb{Q}$ (the set of all rational numbers). Show that τ is not a topology on \mathbb{R} .
- b) Suppose in part (ii) of (a), if $n \in \mathbb{R}$, find the *interior*, *exterior* and *boundary* of the closed infinite interval $A = [7, \infty)$.
- (c) Let (X, τ) be a topological space and $A \subseteq X$. Prove with the usual notations that $\overline{A} = A^o \cup b(A)$.
- (a) Define what is meant by the statement that a function f from a topological space X into a topological space Y is continuous at a point $x \in X$. Prove the following:
 - i. $f: X \to Y$ is continuous on X if and only if $f^{-1}(G)$ is open in X for each open set G in Y.
 - ii. $f: X \to Y$ is continuous if and only if $f(\overline{A}) \subseteq \overline{f(A)}$ for all subsets A of X.
- b) i. Let $f: (X, \tau) \to (Y, \tau^*)$ and let S be a subbase for the topology τ^* on Y.

Prove that f is continuous if and only if the inverse of every member the subbase S is an open subset of X.

- ii. Let f be a function from a topological space X into the unit interval[0,1]
 Use part (i) to show that if f⁻¹[(a,1]] and f⁻¹[[0,b)] are open subsets
 X for all 0 < a, b < 1 then f is continuous.
- 3. (a) Define what is meant by the term *connected set* in a topological space.
 - (i) Let (X, τ) be a topological space. Prove that X is disconnected if \underline{a} only if there are non-empty subsets A, B of X such that $X = A \cup B \underline{a}$. $\overline{A} \cap B = \phi$ and $A \cap \overline{B} = \phi$.
 - (ii) Let (X, τ_1) and (Y, τ_2) be two topological spaces and $f : X \to Y$ be continuous function. Prove that the image of a connected subset A of Iis connected in Y.
 - (b) Define what is meant by the term Hausdorff space.
 Let τ be a topology on a real line R generated by the open-closed interv
 (a, b]. Show that (R, τ) is a Hausdorff space.
- 4. Prove or disprove the following statements:
 - (a) continuous image of a compact set in a topological space is compact;
 - (b) in the usual topology on \mathbb{R} , the set (0, 1) is compact;
 - (c) the class of open intervals $A_n = \left\{ \left(0, \frac{1}{n}\right) : n \in \mathbb{N} \right\}$ satisfies the finite intervalue tion property and $\bigcap_{n \in \mathbb{N}} A_n = \phi$;
 - (d) (X, τ) is a compact topological space if and only if for every class $\{F_i\}$ of desubset of $X, \bigcap_i F_i = \phi$ implies $\{F_i\}$ contains a finite subclass $\{F_{i_1}, F_{i_2}, \dots, F_{i_n}\}$ with $F_{i_1} \cap F_{i_2} \cap \dots \cap F_{i_m} = \phi$.