EASTERN UNIVERSITY, SRI LANKA
THIRD EXAMINATION IN SCIENCE (2012/2013)
SECOND SEMESTER (Sept./Oct., 2015)
$\underline{P M} 301$ - ALGEBRA III (GROUP THEORY)
(PROPER \& REPEAT)

Answer all questions
Time: Three hours

1. (a) State what is meant by
i. an abelian group;
ii. a cyclic group.
(b) Show that the set containing $1, \omega, \omega^{2}, \cdots, \omega^{n-1}$, the $n^{\text {th }}$ roots of unity, forms an abelian group of finite order with usual multiplication. Here $\omega=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right), n=2,3, \cdots$.
(c) Let $G=\langle a\rangle$ be a cyclic group of order $n$ and $a \in G$. Prove that
i. $O\left(a^{m}\right)=\frac{O(a)}{(O(a), m)}$, where $m \in \mathbb{N}$ and $O(a),(O(a), m)$ denote the order of $a$ and the greatest common divisor of $O(a)$ and $m$, respectively.
ii. for any $r \in \mathbb{N}$ such that, if $r$ divides $n$, then $G$ has a subgroup of order $r$.
iii. for any $k \in \mathbb{N}, a^{k}$ generates $G$ if and only if $(k, n)=1$.
(d) Prove that, for any $2 \times 2$ non-singular real matrix and $n \in \mathbb{Z}$

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{n}=\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)
$$

Hence prove that the set

$$
H=\left\{\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right): n \in \mathbb{Z}\right\}
$$

is a cyclic subgroup of a group of the set of all $2 \times 2$ non-singular matrix under the usual matrix multiplication.
2. (a) With the usual notations, prove the following for a group $G$
i. $Z(G)=\bigcap_{g \in G} C(g)$;
ii. $Z(G) \unlhd G$;
iii. If $G / Z(G)$ is cyclic, then $G$ is abelian.
(b) State the Lagrange's theorem.
i. Show that every group of prime order is cyclic and that ever group of order 4 is abelian.

Deduce that every group of order less than 6 is abelian.
ii. Prove that $g^{|G|}=e$ for all $g \in G$, where $e$ is the idenitity element of $G$.
(c) Find the possible order of a non-cyclic subgroup $H$ of a groupd order 100 such that $H$ has no elements of order 2 .
3. Define the term isomorphism as applied to group.
(a) i. Prove that the composition of two homomorphisms is a ho momorphism.
ii. Prove that homomorphic image of a cyclic group is cyclic.
(b) State the First Isomorphism theorem.

Let $U_{2}(\mathbb{Z})$ be the set of $2 \times 2$ upper triangular matrices such thet

$$
U_{2}(\mathbb{Z})=\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right): a, b, d \in \mathbb{Z}, a d \neq 0\right\}
$$

(You may assume, without prove, that $U_{2}(\mathbb{Z})$ together with matii multiplication forms a group.)

Let $\phi: U_{2}(\mathbb{Z}) \rightarrow \mathbb{Z}$ be the mapping defined by

$$
\phi\left(\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\right)=a
$$

i. Show that $\phi$ is a homomorphism.
ii. Find ker $\phi$.
iii. Find image of $\phi$.
iv. Prove that $U_{2}(\mathbb{Z}) / \operatorname{ker} \phi \cong \mathbb{Z}$.
4. (a) Let $G$ be a group and $g_{1}, g_{2} \in G$. Define a relation " $\sim$ " on $G$ by $g_{1} \sim g_{2}$ if and only if there is an element $g \in G$ such that $g_{2}=g g_{1} g^{-1}$.

Prove that " $\sim$ " is an equivalence relation on $G$.
Given $a \in G$. Let $\Gamma(a)$ denote the equivalence class containing $a$.
If $G$ is a finite group, prove the following:
i. $|\Gamma(a)|=[G: C(a)]$, where $C(a)=\{x \in G: x a=a x\}$.
ii. $a \in Z(G)$ if and only if $\Gamma(a)=\{a\}$.
iii. if $|G|=p^{n}$, where $p$ is prime and $n \in \mathbb{N}$, then $G$ has non-trivial center.
(b) Define what is meant by the internal direct product as applied to a group.

Let $H$ and $K$ be two subgroups of a group $G$. Prove that $G$ is a direct product of $H$ and $K$ if and only if
i. each $x \in G$ can be uniquely expressed in the form $x=h k$, where $h \in H, k \in K$.
ii. $h k=k h$ for any $h \in H, k \in K$.
5. (a) Define a commutator subgroup $G^{\prime}$ of a group $G$.

Prove the following:
i. $G^{\prime} \unlhd G$;
ii. $G / G^{\prime}$ is abelian.
(b) Define the term p-group.

Prove the following:
i. factor group of a $p$-group is a $p$-group.
ii. homomorphic image of a $p$-group is a $p$-gwoup.
iii. if $H$ and $G / H$ are $p$-groups, then $G$ is a $p$-group, provided that $H$ is a normal subgroup of $G$.
6. (a) Define the following terms as applied to a permutation group.
i. cycle of order $r$;
ii. transposition;
iii. signature.
(b) Prove that every permutation in $S_{n}$ can be expressed as a produrt of transpositions.
(c) Prove that the set of all even permutations, $A_{n}$, forms a nomid subgroup of $S_{n}$, and $\left|A_{n}\right|=\frac{n!}{2}$.
(State any results you may use without proof)
(d) Express the permutation $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 5 & 8 & 2 & 1 & 7 & 6 & 3\end{array}\right)$ as a prod. uct of disjoint cycles. Hence, find out whether it is odd or eren

