

Response of the Systems for Lightning Generated High Frequency Wave

A thesis submitted for the Degree of Doctor of Philosophy

Velauthampillai Jeyanthiran Faculty of Science, University of Colombo July 2009

> PROCESSED Main Library, EUSL

Abstract

Response of Systems for Lightning Generated High Frequency Wave

Velauthampillai Jeyanthiran

HF radiations associated with lightning generated by tropical and temperate thunderstorms were studied to elaborate the existing knowledge of interaction of the HF radiation due to lightning with structures. The study concentrates on the temporal behavior of the 3, 5 and 10 MHz HF radiation generated by both ground and cloud flashes in tropics (Sri Lanka) and 10 MHz HF radiation generated by cloud flashes in temperate region (Sweden).

The HF radiation was observed with the onset of preliminary breakdown (PB) activity and return stroke together with corresponding broad band electric field changes for ground flashes pertaining to tropical thunderstorms. The PB activity has been found to radiate the HF radiations intermittently and found to be stronger in the return stroke stage compared to those at the PB stage. The mean duration of PB activity was found to be 3.5 ms for both HF and broad band fields. The mean time between RS to predominant PB pulse was 6.5 ms.

The tropical cloud flashes were observed to begin with a large electrostatic field change with sub micro-second scale electric field pulses embedded in it. The corresponding HF radiation is found to begin with the onset of electric field change. It was observed that the amplitude of the high frequency radiations to be maximum at the initial stage with a gradual decay. This clearly supports the two stage model of cloud flashes in which the initial stage is the very active stage.

The analysis of HF radiation at 10 MHz corresponding to cloud flashes pertinent to the temperate thunderstorms indicates that the HF radiations at 10 MHz are initiated with the initiation of the cloud flashes without any significant delay. Furthermore, the temperate cloud flashes have also been found to radiate the HF radiation intermittently throughout the flash. In the majority of temperate cloud flashes the amplitude of HF radiations was found higher at the beginning.

An analysis of the amplitudes of the HF radiation and corresponding broad band electric field pulses reveals weak correlations with the amplitudes of the corresponding broad band fields while a strong correlation was found among the amplitudes of the HF radiation with each other.

The HF response for the small structure has also been computed using transmission line theory by applying the broadband electric field on the structures. It is observed that the signature of the HF radiation and the response of the structure to the broad band electric field show peaks located at the same instant of time. This indicates that the induced voltages have characteristics similar to the 3MHz - 10 MHz radiation associated with the lightning flash. Thus, these radiations can be used as a indicator to identify the sections of the broad band electric fields that are important in the study of the interaction of lightning electromagnetic fields with structures.

The trend of lightning activity over Sri Lanka is of interest to the lightning community and has also been analysed in this study. An analysis of seasonal lightning flash density shows that the first inter monsoon has the maximum density. The mean monthly lightning flash counts show that the most of the lightning activity occur from March to May with a peak in April. The diurnal variation of maximum flash rate is observed to peak at 1630 LT.

Table of Contents

Acknowledgements	iv
Abstract	vi
Table of Contents	vii
List of Tables	х
List of Figures	
1.0 Overview of lightning	1
1.1 Introduction	1
1.2 Foot prints in Lightning Research	2
1.3 Motivation of Study	3
1.4 Aim of the Study	- 3
2.0 Trends of thunderstorm activities in Sri Lanka	5
2.1 Introduction	5
2.2 Methodology	6
2.3. Results and Discussion	6
2.3.1. Latitudinal variation of lightning activity	6
(a). First inter monsoons	6
(b). Southwest monsoon	8
(c). Second inter monsoons	10
(d). Northeast monsoon	12
2.3.2. Statistics of seasonal variation of lightning	14
2.3.3. Annual and inter-annual variation of lightning ad	ctivity 16
2.3.4. Diurnal variation of lightning activity	20
3.0 Instrumentation	- 21
3.1 Introduction	21
3.2.Outdoor measurement of lightning generated fields	21
3.2.1. Parallel plate antenna system	22
3.2.2. Vertical Rod Antenna	23
3.2.3 The HF antenna system	25
3.3. Indoor measurement of lightning generated field	s 26

.

4.0	Review on lightning generated high frequency components	27
	4.1 Introduction	27
	4.2. HF radiation associated with cloud flashes	28
	4.3. (a). The HF radiation associated to Negative ground flashes	30
	4.3.(b). HF radiation associated with subsequent RS	32
	4.4. HF radiation associated to Positive RS	34
	4.5 HF radiation with preliminary Breakdown pulses	35
	4.6 Spectral Amplitude of Lightning Flashes	36
	4.7 Review of HF radiation of lightning observed in	39
	Sri Lanka	
5.0	HF radiation associated with preliminary breakdown pulses	43
	5.1 Introduction	43
	5.2 Measurement setup	43
	5.3 Results and discussion	44
	5.3.1. Initiation of PB pulses and corresponding HF radiation	44
	5.3.2. Mean duration of PB activity	47
	5.3.3. The mean time interval between predominant	49
	PB to end of PB	
	5.3.4. The time between predominant PB to RS	49
	5.3.5 The mean time duration between successive PB	50
	pulses	
	5.3.6. The duration of PB pulse	51
` 6.0	HF radiation associated with the cloud flashes	62
	6.1 Introduction	62
	6.2.Experimental setup	63
	6.3. Result and discussion	64
	6.3.(a). Flashes observed in Sri Lanka	64
	6.3. (b) Flashes observed in Sweden	77
	6.3. c. Comparison of temperate and tropical cloud flashes	82
7.0	HF response on the structures	84

viii