BIOLOGY AND BEHAVIOUR OF TELENOMUS SPP. (HYMENOPTERA: SCELIONIDAE) EGG PARASITOIDS, ATTACKING SPODOPTERA SPP. (LEPIDOPTERA: NOCTUIDAE)

BY

SIVASUBRAMANIAM RAVEENDRANATH B.Sc. (Agric.) Sri Lanka

A thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of membership of the Imperial College.

26925

Dept. of Pure and Applied Biology Imperial College, Silwood Park, Ascot, Berkshire.

ON.751574 RAV

February 1987

PROCESSED Main Library, EUSI

ABSTRACT

The main objective of this laboratory based study is to compare the biology and behaviour of eight <u>Telenomus</u> populations obtained from different parts of the world and from the findings to recommend which strain and/or species will be more suitable to control the eggs of Spodoptera spp. in the field.

The developmental time of the eight <u>Telenomus</u> populations were studied on <u>Spodoptera littoralis</u> and <u>S. frugiperda</u> and it was found that the developmental time of the <u>Telenomus</u> population from the Hawaiian region was longer than the others. Longevity was measured for each population in the presence and absence of the host. In all the <u>Telenomus</u> populations mated males are short lived and the longevity of mated females was reduced considerably when exposed to hosts.

The fecundity of these <u>Telenomus</u> populations was studied on <u>S</u>. <u>littoralis</u> and <u>S</u>. <u>frugiperda</u>. In both host species, the highest and lowest potential fecundity was recorded in the <u>Telenomus</u> populations from Barbados and Hawaii respectively.

Cross breeding experiments were carried out between the <u>Telenomus</u> populations from various sources to determine their genetic compatibility. Findings from these experiments indicate that there are two distinct biological species, <u>T. nawaii</u> (Hawaiian region) and <u>T. remus</u> (Barbados and elsewhere). Therefore further experiments on the biology and behaviour of these two biological species were carried out with additional host species, <u>S. exigua</u> and <u>S. exempta</u>. The fecundity of both the biological species was significantly reduced when they were exposed to <u>S. exigua</u>. Although more females than males were observed in these naturally inbreeding populations, a male biased sex ratio was observed with increased parasitoid:host ratio of the two biological species.

-3-

In a multilayered eggbatch, both of these biological species were able to attack only a small proportion of the eggs in the lower layer. Finally the searching efficiency of the two biological species was compared on the host eggs laid on Brussels sprout and onion plants. It was found that, although \underline{T} . <u>nawaii</u> finds hosts more rapidly, the searching efficiecy (attack rate) was higher for \underline{T} . <u>remus</u>. The two parasitoid species showed no behavioural differences in attacking eggs laid on these two plants.

Based on the biological parameters tested in this study \underline{T} . remus Barbados is a better choice than \underline{T} . nawaii in many aspects and could be recommended for future use.

TABLE OF CONTENTS

-6-

3		
1.6.3 Other methods of control	••••	25
1.7 Importance of Telenomus spp. in control		26
1.7.1 <u>Telenomus</u> egg parasitoids associated with <u>Spodoptera</u>		26
1.7.2 Biology and Ecology of Telenomus	•• ••	27
1.7.3 Introduction and Results		29
1.8 Aims of this study		36
CHAPTER 2 CULTURING OF HOST AND PARASITOIDS		38
2.1 Culturing of host		38
2.2 Rearing of parasitoids		40
	6	
CHAPTER 3 MORPHOLOGY	•• •• v.	43
3.1 Introduction		43
3.2 Materials and Methods		44
3.2.1 Male genitalia		44
3.2.2 Female antenna		46
3.3 Results and discussion		46
3.3.1 Male genitalia		46
3.3.2 Female antenna		50
CHAPTER 4 GENERAL BIOLOGY		51
4.1 Introduction		51
4.2 Materials and Methods	A	52
4.2.1 Developmental time		52
4.2.2 Longevity		52
4.3 Results and discussion		53
4.3.1 Developmental time		53
4.3.1.1 Effect of host species on development time		53
4.3.1.2 Effect of temperature on the dev. time of the two biological species		60

-7-

.

,		
4.3.2 Longevity		66
4.3.2.1 Males		66
4.3.2.2 Females		69
4.3.2.3 Females with host		70
CHAPTER 5 REPRODUCTIVE BIOLOGY		71
5.1 Introduction		71
5.2 Materials and Methods		72
5.2.1 Potential fecundity		72
5.2.2 Actual fecundity		74
5.3 Results and Discussion	••••	74
5.3.1 Potential fecundity	••••	74
5.3.2 Actual fecundity		81
5.3.3 Comparing actual and potential fecundity	** **	90
5.3.4 Size and fecundity		93
5.3.5 Rate of increase		93
5.3.6 Sex ratio		97
CHAPTER 6 CROSS BREEDING		101
6.1 Introduction		101
6.2 Materials and Methods		102
6.3 Results and Discussion		105
CHAPTER 7 BEHAVIOUR OF THE TWO BIOLOGICAL SPECIES OF Telenomus		113
7.1 Introduction		113
7.2 Materials and Method		114
7.2.1 Effect of plant species in host location		115
7.2.1.1 Results and Discussion		117
7.2.1.1.1 Host locating efficiency of the parasitoids		118
7.2.1.1.2 Effect of plant species		122

-8-