PERMANENT REFERENCE

EFFECT OF DIFFERENT ORGANIC MANURES AND CHEMICAL FERTILIZERS ON NITROGEN, PHOSPHORUS AND POTASSIUM USE EFFICIENCY OF RED ONION GROWN IN REGOSOLS

Ву

PUNITHA PREMANANDARAJAH

Thesis

Submitted in partial fulfillment of the requirements

for the degree of

MASTER OF PHILOSOPHY

in the

POSTGRADUATE INSTITUTE OF AGRICULTURE

125,258 ap

of the

50659

UNIVERSITY OF PERADENIYA

PERADENIYA

March, 2003

IBRA

11

ABSTRACT

A field study was conducted to study the effect of three organic manures and chemical fertilizers on nitrogen, phosphorus and potassium use efficiency of red onion (Jaffna local) grown in regosols. The study was conducted at the Ramakrishna Mission farm, Kallady, Batticaloa during <u>yala</u> 1999.

The experiment was laid out in a strip plot design, replicated four times. Three different organic manures (cattle manure 10t/ha, poultry manure 10t/ha and straw 5t/ha) were tested at two levels of chemical fertilizers (recommended and half the recommended level) in a factorial experiment. A second cropping was repeated in the same plot without fertilizer addition to study the residual effect of organic manure in the sandy regosol and on plant growth. Laboratory experiment was also conducted to study the effect of organic manures on nutrient leaching from the soil.

The result showed that in both the croppings, poultry manure was more effective than cattle manure in increasing nitrogen, phosphorus and potassium uptake. In cattle manure treatment nitrogen and phosphorus uptake ranked second in both croppings, but potassium uptake ranked second and third in first and second cropping respectively. In straw treated plots the uptake of these nutrients was decreased in the first cropping, but was increased in the second cropping and ranked third in nitrogen and phosphorus uptake and second in potassium uptake.

i

In the first cropping, all the organic manures with recommended level of chemical fertilizer increased the nutrient uptake than with half the recommended level. But in second cropping the above combinations did not show any significant difference.

In both the croppings, organic manure addition increased the soil nitrogen, phosphorus and potassium content. Combination of organic manure and chemical fertilizer influenced the soil phosphorus content but not the nitrogen and potassium content.

Organic manure reduced nitrate leaching in both the croppings but the difference among treatments was not significant. Among organic manures, straw and poultry manure treated plots had more phosphate and potassium leaching respectively.

Nitrogen and potassium use efficiencies were higher in straw treatment (88%) and cattle manure treatment (89%) respectively. Straw treatment showed a negative value for phosphorus use efficiency (-87%). Nitrogen and phosphorus use efficiencies were lower in poultry manured plot (37% and 17% respectively) and potassium use efficiency was lower in straw treated plot (42%). In the first cropping only poultry and cattle manure increased the onion yield but in second cropping all the organic manures increased the onion yield was lower in second cropping than in the first. In both croppings, the combination of organic manure with recommended level of chemical fertilizer gave highest onion yield than half the level of combination.

TABLE OF CONTENTS

]	Page
	ABSTRACT		i
	ACKNOWLEDGEMENTS		iii
	TABLE OF CONTENTS		iv
	LIST OF TABLES		Х
	LIST OF FIGURES		xiii
	ABBREVIATIONS		xvii
	and the second		
	CHAPTER 1		
1.	INTRODUCTION		01
	1.1 Objectives of the present study		05
	CHAPTER 2		
	LITERATURE REVIEW		06
	2.1 Nature and properties of regosals		06
	2.2 Effect of organic matter on soil properties		07
			07
	2.2.1 Effects of organic matter on physical properties		08
	2.2.2 Effects of organic matter on Chemical property		09
	2.2.3 Effect on biological property		10

2.3Effect of organic matter on crop yield	11
2.4 Selection of organic matter	12
2.4.1 Cattle manure	12
2.4.2 Poultry manure	13
2.4.3 Rice straw	14
2.5 Onion	15
2.6 The Role of integrated plant nutrition system	16
2.6.1 Fertilizer use efficiency	17
2.6.2 Residual effect	18
2.6.3 Leaching loss	19
CHAPTER 3	
3. MATERIALS AND METHODS	
3.1 Soil	20
3.1.1 Physical properties	20
3.1.2 Chemical properties	* 21
3.2 Climate	21
3.3 Organic manures	. 21
3.4 Experimental design	22
3.5 Experiment I	23
3.5.1 Field experiment	23
3.5.1.1 Planting	* 23

3.5.1.2 Cultural practices	23
3.5.1.3 Soil sampling and the determination of their	
properties	24
3.5.2 .4 Soil analysis	24
3.5.1.4.1 Soil nitrogen content	24
3.5.1.4.2 Available Phosphorus content of soil	25
3.5.1.4.3 Exchangeable Potassium content of soil	25
3.5.1.5 Plant analysis	25
3.5.1.5.1 Nitrogen content	25
3.5.1.5.2 phosphorus and Potassium content	25
3.5.2 Laboratory experiment	26
3.5.2.1 Nitrate nitrogen determination	27
3.5.2.2 Phosphorus determination	27
3.5.2.3 Potassium determination	28
3.6 Experiment II	28
3.7 Fertilizer use efficiency	28
CHAPTER 4	
4. RESULTS AND DISCUSSION	
4.1 Nitrogen	29
4.1.1 First cropping	29

4.1.1.1 Effect of different treatments on nitrogen uptake	29
4.1.1.2 Effect of different treatments on soil nitrogen	
content	35
4.1.1.3 Effect of different treatments on nitrate	
leaching.	39
4.1.2 Second Cropping	43
4.1.2.1 Effect of different treatments on nitrogen uptake	43
4.1.2.2 Effect of different treatments on soil	
nitrogen content	45
4.1.2.3 Effect of different treatments on nitrate	
leaching from soil	48
4.1.3 Nitrogen use efficiency	51
4.1.3.1 Effect of different treatments on the efficiency	
of nitrogen use	51
4.2 Phosphorus	54
4.2.1 First cropping	54
4.2.1.1 Effect of different treatments on phosphorus	
uptake.	54
4.2.1.2 Effect of different treatments on soil phosphorus	
content.	59
4.2.1.3 Effect of different treatments on phosphorus	
leaching	64

4.2.2 Second cropping	68
4.2.2.1 Effect of different treatments on phosphorus	
uptake	68
4.2.2.2 Effect of different treatments on soil phosphorus	
content	71
4.2.2.3 Effect of different treatments on phosphorus	
leaching from soil	76
4.2.3 Phosphorus use efficiency	80
4.2.3.1.Effect of different treatments on the efficiency	
of phosphorus	80
4.3 Potassium	83
4.3.1 First cropping	83
4.3.1.1 Effect of different treatments on potassium uptake	83
4.3.1.2 Effect of different treatments on soil potassium	88
4.3.1.3 Effect of different treatments on potassium	
leaching.	91
4.3.2 Second cropping	96
4.3.2.1 Effect of different treatments on potassium uptake	96
4.3.2.2 Effect of different treatments on soil potassium	99
4.3.2.3 Effect of different treatments on potassium	
leaching from soil.	102
4.3.3 Potassium use efficiency	106