

INTERRELATIONS AP AMONG ENVIRONMENTAL, PHYSIOLOGICAL AND MANAGEMENT FACTORS, COOLING TREATMENT, BETA HYDROXYBUTYRATE AND SERUM PROGESTERONE AT INSEMINATION WITH CONFCEPTION RATE OF WATWER BUFFALO (Bubalus bubalis)

By

LIBRA

Barann Emiwersity, Sall

NPT

21

R

200

n Library, Erici

22 . 20 or

MYLAVAGANAM PAGTHINATHAN

Thesis

Submitted in partial fulfillment of the requirements

for the degree of

MASTER OF PHILOSOPHY

in the

POSTGRADUATE INSTITUTE OF AGRICULTURE

of the

UNIVERSITY OF PERADENIYA -

PERADENIYA

54714

JULY 2004

ABSTRACT

A study was carried out from January 2001 to March 2003, at Melsiripura and Nikaweratiya National Livestock Development Board farms, to assess the relationship among thermal environment, physiological indices, circulating hormones, metabolites and management at the time of insemination with conception rate (CR) of water buffalo (*Bubalus bubalis*).

A total of 226 breedable buffalo cows at 90 - 300 days postpartum (DPP) and belonging to Nili-Ravi, Surti breeds and their crosses were used for this study. All the cows were artificially inseminated (AI) with deep frozen semen of the same bull following oestrous induction by administering of progesterone releasing intra vaginal device (PRID) and prostaglandin (PGF_{2 α}) and detection of heat signs. At the time of insemination, individual rectal temperature (RT), vaginal temperature (VT), pulse rate (PR), respiration rate (RR), heat sign score (HSS), body condition score (BCS) of each cow, the time of AI and the time lapse between fist detection of heat signs to insemination were recorded. In addition, the environmental temperature (ET) and relative humidity (RH) at the time of insemination was also recorded. A representative sample of 102 cows was randomly selected for application of cooling treatment (sprinkling of 10 L water / cow for 10 min at -1hr, 0 hr, and +1 hr post insemination). Data on age, parity, date of last calving, test day milk yield (MY) of each cow and information on the experience of the inseminator were documented. Blood samples were obtained at insemination from each cow to quantify circulating D-3- hydroxybutyrate (BHB) and progesterone. Conception was assessed by per rectal palpation at 90 days and 120 days post insemination.

Mean ET, RH and temperature humidity index (THI) at inseminations (n=226) were 28.4 \pm 2.3 ° C, 75.6 \pm 2.5 % and 79.6 \pm 2.7, respectively. ET was negatively (p<0.05) correlated to RH, but was positively (r= 0.88, p<0.05) correlated with THI. RR was inversely (p<0.05) related to RH. VT and RT were positively (r= 0.55, p<0.05) correlated, while VT was 0.4 \pm 0.22 ° C higher than RT. Test day MY was negatively (p<0.05) correlated with ET, THI and age of the animal.

Over all mean CR was 55.38 %. Lower (p<0.05) CR was resulted from inseminations performed when ET > 29.0 $^{\circ}$ C, THI > 81.4, RT > 38.0 $^{\circ}$ C and VT > 38.0 $^{\circ}$ C. Cooling treatment significantly (p<0.05) reduced RT and VT at insemination and improved CR, but did not affect circulating BHB, progesterone, intensity of heat symptoms or MY. Negative trend between CR and BHB suggested importance of energy nutrition of cows for improving CR. Cows that were <150 DPP, those inseminated within 8-16 hours of first detection of heat, and the cows with more intense heat signs at insemination had superior (p<0.05) CR. Blood serum progesterone varied among cows in association with the reproductive status, while CR varied between inseminators.

These results suggest that the CR of water buffalo cow is adversely affected under hot thermal environmental condition and poor energy nutrition. Cooling at insemination to reduce RT and VT below 38° C, inseminating the cows having low BHB, high intensity of heat signs, at <150 DPP, within 8-16 hours of first detection heat by a skilful technician can improve CR in water buffalo.

CONTENTS

			Page
ABST	TRACT '		I - II
ACK	NOWLEDGEMENT		III-IV
LIST	OF TABLES		Х
LIST	OF FIGURES		X1
1. IN	TRODUCTION		01
2. RE	VIEW OF LITERATURE		05
	2.1 Present status of buffalo in Sri Lanka		05
	2.2 Reproduction in female buffalo		06
	2.2.1 Puberty		06
14	2.2.2 Oestrous cycle	1	07
	2.2.2.1 Oestrous signs		09
	2.2.2.2 Heat detection		11
	2.2.2.2.a Visual observation		11
	2.2.2.2.b Oestrous detection aids		12
	2.2.3 Oestrous synchronization	1 2	14
	2.3 Artificial insemination (AI)	~	15
	2.4 Fertilization		17
	2.5 Conception	v	18
	2.6 Conception rate		20
	2.7 Factors effecting conception rate		20
	2.7.1 Cow factors		21

p,	age
1 (igu

	2.7.1.2 Rectal temperature (RT)	21
	2.7.1.2 Vaginal temperature (VT)	21
	2.7.1.3 Respiration rate (RR)	22
	2.7.1.4 Pulse rate (PR)	23
	2.7.1.5 Body condition score (BCS)	23
	2.7.1.6 Days postpartum (DPP)	24
**	2.7.1.7 Milk production	24
	2.7.1.8 D-3-hydroxybutyrate/ Beta hydroxybutyrate (BHB)	25
	2.7.2 Environmental factors	26
	2.7.2.1 Environmental Temperature (ET)	26
i.	2.7.2.2 Temperature – humidity index (THI)	28
	2.7.3 Management factors	29
	2.7.3.1 Timing of insemination	29
	2.7.3.2 Insemination Technique and skill of inseminator	29
	2.7.3.3 Manipulation of environment (Cooling treatment)	31
	2.8 Circulating progesterone	32
3. MA	TERIALS AND METHODS	33
	3.1 Location	33
	3.2 Animals	33
	3.3 Synchronization of estrus	33

		Page
	3.4 Semen used and artificial inseminator	33
	3.5 Measurements	
	3.5.1 Information on farm, cows and inseminators	34
	3.5.2 Physiological and environmental parameters	34
	3.5.3 Body condition score	35
	3.5.4 Heat signs and time of insemination	35
ł	3.6 Thermal alleviation (Sprinkling of water)	35
ť	3.7 Blood samples and sample processing	37
	3.8 D-3- hydroxybutyrate/Beta hydroxybutyrate (BHB) analysis	37
	3.9 Blood progesterone assay	39
4	3.10 Pregnancy diagnosis	40
	3.11 Statistical analysis	40
. RE	SULTS AND DISCUSSION	41
51 ⁻²⁵ -	4.1 Location	41
	4.2 Animals and Management	41
	4.3 Inseminating time	42
	4.4 Environmental parameters (ET,RH and THI)	42
	4.5 Cow information	44
	4.6 Physiological Parameters	44
	4.7 Relationship among the environmental parameters and animal	
	parameters	47
	4.8 Physiological parameters response to cooling	55
	4.9 Circulating D-3- hydroxybutyrate (BHB)	55

4

VII

VIII

	Page
4.10 Heat sign score	58
4.11 Circulation progesterone	58
4.12 Conception rate (CR)	59
4.13 Relationship between environmental temperature at insemination	57
and conception rate	61
4.14 Relationship between relative humidity at insemination	01
and conception rate	63
4.15 Relationship between temperature humidity index at insemination	
and conception rate	63
4.16 Relationship between rectal temperature at insemination	05
and conception rate	66
4.17 Relationship between vaginal temperature at insemination	00
and conception rate	68
4.18 Relationship between day postpartum at insemination	08
and conception rate	68
4.19 Relationship between body condition score(BCS) at insemination	08
and conception rate	71
4.20 Relationship between parity at insemination and conception rate	71
4.21 Relationship between test day milk yield at insemination	73
and conception rate	70
4.22 Relationship between age at insemination and conception rate	73
4.23 Circulating D-3- hydroxybutyrate (BHB) at insemination	73
and conception rate	
	76

ł

•