PHENOTYPIC AND GENETIC CHARACTERIZATION OF WILD BOAR AND VILLAGE PIGS IN SRI LANKA

by

SUBALINI THANGARAJAH

Thesis

Submitted in partial fulfillment of the requirements

for the degree of

Master of Philosophy

in the

POSTGRADUATE INSTITUTE OF AGRICULTURE

of the

UNIVERSITY OF PERADENIYA

PERADENIYA

SEPTEMBER 2009

PROCESSE!) Main Library, EUSI

ABSTRACT

Identification of the genetic diversity of wild boar and village pigs in Sri Lanka is vital for generating information to establish genetic improvement and conservation program as they are the only remaining putative alleles with economic value. In this context, the formulated study was comprised a field survey followed by laboratory investigations at molecular level. Field investigation was carried out at different locations in Sri Lanka; Puttalam, Kurunegala, Kalutara and Chilaw.

The result of the field investigation showed that most of the village pig community was Christian dominated. Thirty four percent of total income generation by village pig rearing comes from animal sales. The predominant management system of village pig was extensive system (77 percent) with moderate rearing condition and occasionally tethering and rearing in simple huts or concrete pens. The study showed that scavenging was the common method of feeding under extensive management system, especially in Kalutara area.

Swill feeding was the most common and popular among village pig farmers (60 percent). In the survey areas veterinary and extension services for village pig farmers are moderately available (on average of 44 percent). Marketing facilities were well organized in the survey area. The majority of the farmers (47 percent) keeping 1-5 village pigs in their herd with multiple category. The reasons for keeping village pigs are diverse; the predominant reasons were easy management, low disease incidences and low cost enterprise. According to the present study, the common coat color of village pigs was black with long straight face. Most of the village pigs in surveyed areas had skin pigmentation (85 percent). Majority of the pigs had medium sized erect ears (77 percent). Eighty percent of the village pigs had stocky body. Pigs with 7 pairs of teats were observed to be most common (68 percent) followed by those with 6 pairs of teats.

The overall mean weights for the adult village pigs were 59.49 kg and 58.92 kg for male and female respectively. The girth size, height at withers, body length, length of head and width of head were comparatively higher in stocky type pigs than in animals with angular body shape. Eighty eight percent of the animals with stocky body shape had concave shape of head, straight tail and upward erected ears.

The average litter size was 6.44 \pm 1.19 and it showed variation in different locations. The average age at fist furrowing was 292 days. The gestation length was from 100 \pm 18 days. There was no significant difference in age at first furrowing and gestation period among surveyed areas except furrowing interval (P>0.05).

In wild boar the qualitative traits such as body shape, head shape and orientation, ear shape and orientation, coat characteristics and tail thickness were very similar in different locations in Sri Lanka. Coat color was light brown without skin pigmentation. Wild boars had concaved, long straight head with horizontally erected medium sized ears. All the wild boars in the study had stocky body with straight and narrow tail. Female had 5 teats. The weight of adult female and male was 75 kg and 74 kg respectively.

Π

To study the genetic diversity and for molecular characterization, village pig, wild boar and exotic pig breeds namely Landrace, Large white and Duroc were genotyped for fifteen microsatellite markers recommended by International Society for Animal Genetics (ISAG) and Food and Agriculture Organization (FAO). Allele numbers, effective allele numbers (Ne), allele frequencies, observed and expected heterozygosities were calculated to determine the genetic variation in village pigs and wild boar populations. The observed heterozygosities were in the range of 0.72 in village pigs to 0.34 in exotic pigs.

Total of 138 alleles were found at the 15 loci across five populations. The allele 242 in the locus S0090 was only found in both wild boar and village pigs. Allele 206 and 218 in the locus S0218 and allele 220 at locus S0228 were only found in exotic pigs. The mean effective number of alleles for 15 loci in wild boar, village pigs and exotic types were 2 ± 0.38 , 2 ± 0.53 and 1.73 ± 0.59 respectively. The observed heterozygosity value was higher in village pigs followed by wild boar (0.64 ± 0.02) than other pig populations used in this study (0.72 ± 0.02).

In the phylogenetic tree, high distances were observed separating exotic pig populations from the other two populations of village pigs and wild boar. The village pigs and wild boar clustered separately. Based on these findings it is proposed that village pigs and wild boars may be recognized as distinct population for breeding or conservation purpose. The village pigs and wild boar included in this study clearly diverged from each other. However, village pig from Kalutara was showing similarities to wild boar.

TABLE OF CONTENTS

ABSTRACT			Ι
ACKNOWLEDGEMENT			V
TABLE OF CONTENTS			VII
LIST OF TABLES			XII
LIST OF FIGURES			XIV
LIST OF PLATES			XVI
CHAPTER 1			
INTRODUCTION			1
1.1 Rationale of study			1
1.2 Overall objectives			6
CHAPTER 11			
REVIEW OF LITERATURE			7
2.1 Global status of Animal Genetic Resources (AnGR)			7
2.2 Importance of livestock genetic resources			8
2.3 Threat to livestock genetic resources			9
2.4 Status of Biodiversity in Sri Lanka		a	10
2.5 Swine			11
2.5.1 Taxonomy	~		11
2.5.1.1 Phylogenetic classification of the pig			11
2.5.2 Domestication of pig	~ ~		12
2.5.3 Distribution of pig population in the world			15
2.5.4 Importance of Swine			16
2.5.5 Threats to genetic diversity of swine		*	17

VII

VIII

2.5.6 The global program for conservation of Pig Animal Genetic resour	ces 17
2.5.7 Swine Industry in Sri Lanka	18
2.5.7.1 Distribution of swine population in Sri Lanka	18
2.5.7.3 Swine breeds in Sri Lanka	19
2.5.7.3.1 Exotic breeds	21
2.5.7.3.2 Wild Boar	21
2.5.7.3.2.1 Taxonomy of Wild boar	21
2.5.7.3.2.2 Geographic range of wild boar	21
2.5.7.3.2.3 Threats to survival of wild pigs	22
2.5.7.3.2.4 Conservation status	22
2.5.7.3.2.5 Phenotypic appearance of wild boar	23
2.5.7.3.2.6 Habitat of wild boar	24
2.5.7.3.2.7 Social groups and behavior of wild boar	25
2.5.7.3.2.8 Reproduction of wild boars	25
2.5.7.3.2.9 Communication and perception	20
2.5.7.3.2.10 Food habitats	27
2.5.7.3.2.11 Mortality and survival	27
2.5.7.3.2.12 Wild boars in Sri Lanka	27
2.5.7.3.3 Village pigs	28
2.5.7.3.3.1 Importance	20
2.5.7.3.3.2 Origin and domestication of indigenous pigs	28
2.5.7.3.3.3 Village pigs in Sri Lanka	29
2.5.7.3.3.4 Phenotypic characteristics	31
2.5.7.3.3.5 Reproductive performances	32
2.5.7.3.3.6 Growth and carcass traits	33
	33

2.6 Genetic diversity	2.4
2.7 Characterization of animals	34
2.8 Molecular markers	35
2.8.1 Restriction Fragment Length D. L.	36
2.8.2 Bondamb A a light pair Polymorphism (RFLP)	37
2.8.2 Randomly Amplified Polymorphic DNA (RAPD)	38
2.8.3 Amplified Fragment Length Polymorphism (AFLP)	39
2.8.4 SSR (Microsatellite)	39
2.8.4.1 Application of microsatellite in genetic diversity studies	41
2.8.5. Single Nucleotide Polymorphism	42
2.8.6 Mitochondrial DNA markers	42
2.9 Measuring of genetic distance	43
2.10 Phylogenetic tree	43
CHAPTER 111	
MATERIALS AND METHODS	44
3.1 Field study	44
3.1.1.1 Data analysis	46
3.2 Laboratory investigation	46
3.2.1 Blood sample collection	47
3.2.1.1 Extraction of leucocytes	48
3.2.1.2 Lyses and incubation of pellet	48
3.2.1.3 Centrifugation and precipitation of DNA	49
3.2.1.4 Drying and dissolving of DNA pellet	49
3.2.1.5 Storing of DNA	50
3.2.2 Confirmation and quantification of DNA	50
3.2.3 Polymerase Chain Reaction with microsatellites	51

-

IX

3.2.3.1 Amplification conditions for primers	54
3.2.4 Polyacrylamide Gel Electrophoresis (PAGE)	56
3.2.4.1 Preparation and cleaning of glass plates	56
3.2.4.2 Preparation and casting of 6% Polyacryamide gel	56
3.2.4.3 Pre-running of the gel	57
3.2.4.4 Preparation of samples for loading	57
3.2.4.5 Preparation of 100 bp PCR low ladder	57
3.2.4.6 Loading of samples and running the gel	58
3.2.4.7 Silver staining of Polyacrylamide gel	58
3.2.5 Molecular analysis	58
CHAPTER 4	
RESULTS AND DISCUSSION	59
4.1 Village pigs	59
4.1.1 Socio-economic role of village pigs	59
4.1.2 Management system	62
4.1.3 Nutrition	64
4.1.4 Other facilities	66
4.1.5 Herd size	67
4.1.6 Disease and mortality among village pigs	69
4.1.7 Reasons of rearing village pigs	69
4.1.8 Morphological traits	71
4.1.8.1 Coat characteristics	71
4.1.8.2 Head characteristics	72
4.1.8.3 Ear characteristics	73
4.1.8.4 Tail shape	74
	/ 1

1.

Х