

DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE - 2008/2009
SECOND SEMESTER (Sep./Nov., 2010)

ST 104 - DISTRIBUTION THEORY

(RE-REPEAT)

1. (a) If U has a χ^{2} distribution with n degrees of freedom,

$$
\theta= \begin{cases}\frac{e^{-\frac{n}{2}} u^{\left(\frac{n}{2}-1\right)}}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)}, & u \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Find $E(U)$ and $V(U)$.
(b) Let $Y_{1}, Y_{2}, Y_{3}, \ldots, Y_{n}$ be random sample from a normal distribution with mean μ and variance σ^{2}. Find the $E\left(S^{2}\right)$ and $V\left(S^{2}\right)$, where

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left[Y_{i}-\bar{Y}\right]^{2} \quad \text { and } \quad \bar{Y}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{Y}_{\mathrm{i}}
$$

2. If X and Y are two random variables have density function

Find

$$
f_{X Y}(x, y)= \begin{cases}\frac{1}{8}(6-x-y), & \text { if } 0<\mathrm{x}<2,2<\mathrm{y}<4 ; \\ 0, & \text { otherwise }\end{cases}
$$

(a) marginal densities of X and Y.
(b) joint cumulative distribution function.
(c) $P(X<1, Y<3)$.
(d) $P(X+Y<3)$.
(e) $P(X<1 \mid Y<3)$.
3. (a) A particular fast-food outlet is interested in the joint behavior of the random va Y_{1}, defined as the total time between a customer's arrival at the store and leavi service window, and Y_{2}, the time that a customer waits in line before reachi service window. Because Y_{1} contains the time a customer waits in line, we mus $Y_{1} \geq Y_{2}$. The relative frequency distribution of observed values of Y_{1} and Y_{2} modeled by the probability density function

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}e^{-y_{1}}, & 0 \leq y_{2} \leq y_{1}<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Another random variable of interest is $U=Y_{1}-Y_{2}$, the time spent at the window.
i. Find the probability density function for U.
ii. Find $E(U)$ and $V(U)$.
(b) Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independent uniformly distributed random variables on the in $[0, \theta]$.
i. Find the probability distribution function of $Y_{(n)}=\max \left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$.
ii. Find the density function of Y_{n}.
iii. Suppose that the number of minutes that you need to wait for a bus unif distributed on the interval $[0,15]$. If you take the bus five times, what probability that your longest wait is less than 10 minutes?
(a) Suppose that the length of time Y that takes a worker to complete a certain task, has the probability density function

$$
f(y)= \begin{cases}e^{-(y-\theta)}, & y \\ 0, & \text { other vise. i1F: }\end{cases}
$$ Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ denote the random sample of completion times fromt this distribution.

i. Find the density function for $Y_{(1)}=\min \left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$.
ii. Find $E\left(Y_{(1)}\right)$.
(b) Let X be a standard normal variate. Show that $Y=X^{2}$ is a chi-square random variable with degrees of freedom 1.
(c) Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be a random sample of size n from a normal distribution with a mean μ and a variance of σ^{2}. If $Z_{i}=\frac{\left(Y_{i}-\mu\right)}{\sigma}$, show that $\sum_{i=1}^{n} Z_{i}^{2}=\sum_{i=1}^{n}\left[\frac{\left(Y_{i}-\mu\right)}{\sigma}\right]^{2}$ is a χ^{2} distribution with n degrees of freedom.

Let Y be a random variable with density function given by

$$
f(y)= \begin{cases}\frac{3}{2} y^{2}, & -1 \leq y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the density function of $U_{1}=3 Y$.
(b) Find the density function of $U_{2}=3-Y$.
(c) Find the density function of $U_{3}=Y^{2}$.
(d) Find $V\left(U_{1}\right), V\left(U_{2}\right)$ and $V\left(U_{3}\right)$.
6. A certain process for producing an industrial chemical yields a product containin types of impurities. For a specify sample from this process, let Y_{1} denote thè proport impurities in the sample and Y_{2} the proportion of type I impurity among all impurities Suppose the joint distribution of Y_{1} and Y_{2} can be modeled by the following proba density function

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}2\left(1-Y_{1}\right), & 0 \leq y_{1} \leq 1,0 \leq y_{2} \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the probability density function of the proportion of type I impurities sample.
(b) Find the expected value of the proportion of type $I I$ impurities in the sample.

