Answer All Questions

Describe briefly the Array data structure.

A lower triangular matrix is a square matrix $A=\left(a_{i j}\right)$ in which $a_{i j}=0$ for $i<j$. It is written as

Define a sequential allocation for such matrices.

Write down the number of elements in the lower triangular part of an $M * M$ lower-triangular matrix.

Write a C++ program to read an $\mathrm{M} * \mathrm{M}$ lower triangular matrix into a one-dimensional array as a row-major representation, and find the row-sums.

An upper-triangular matrix is a square matrix $A=\left(a_{i j}\right)$ in which $a_{i j}=0$ for $i>j$. Show how you would represent into a one-dimensional array as a column-major representation. (Hint: Consider the transpose)

Define and implement $A D T$ stack data structures using linked list toirepresent the list of elements.
(a) Write a C++ program that reads an integer number and to output whether the input number is a palindrome or not.
(b) Define $A D T$ Queue structure and implement it using two stacks.

Describe briefly the Backtracking technique with a suitable example. Suppose that S be a given set of integers and M be a given integer number. You are required to find all-possible subsets of s in which the sum of elements of a subset must be equal to M.

Write an algorithm to solve the above problem using backtracking technique.

Trace this algorithm for the following set of data: $s=\{1,7,8,14\}$ and $M=15$.

Show how you would modify your algorithm to find the sum to be less than or equal to M.
(a) Describe the Bubblesort algorithm to sort any given list of numbers.

Give a complexity analysis of the Bubblesort algorithm. ,
(b) Describe briefly Divide-and-Conquer technique with a suitable example.

Describe the Quicksort algorithm to sort given list of numbers.

Give a complexity analysis of the Quicksort algorithm.

Trace the above sorting algorithms for each of the following lists of numbers:
(a) 1, 1, 1, 1, 1
(b) $1,2,3,4,5$
(c) $9,8,7,6,5$
(d) $5,8,3,7,1$

