

0 4 JUN 2010

Eastern University, Sri Lanka

Third Year Special Repeat Examination in Science

2008/2009 (February2010)

CH 303 Electrochemistry

Time Allowed: ONE HOUR

Answer all questions

1. (a) Define the term 'molar conductivity'

(10 marks)

(b) By using Arrhenius ionization theory Show that $\frac{\Lambda}{\Lambda^0} = \alpha$, for a weak electrolyte.

where Λ - molar conductivity, Λ^0 - molar conductivity at infinite dilution and α - degree of dissociation of a weak electrolyte. (15 marks)

- (c) The resistance of a 0.01 M solution of acetic acid measured in a cell of cell constant 0.20 cm⁻¹ was found to be 760 Ω at 25 ⁰ C. The limiting molar conductivity of CH₃COONa, HCl and NaCl at the same temperature are 91.0, 425.0 and 128.0 S cm² mol⁻¹ respectively. Calculate,
 - i) the molar conductivity (\land) of the acid solution (20 marks)
 - ii) the molar conductivity of acetic acid at infinite dilution $(\wedge_{CH,COOH}^{0})$ (20 marks)

iii) the degree of dissociation (α)

(10 marks)

Turn Over

(d) The resistance of 0.01 M NaCl solution at 298 K is 200 Ω . Cell constant of the conductivity cell is 2 cm⁻¹. Calculate the molar conductivity of the solution.

(25 marks)

- 2. (a) Write the electrode half reactions and the cell reactions for the following cells.
 - i. $Ni(s) / Ni^{2+}(aq) / Ag^{+}(aq) / Ag(s)$

0.4 JUN 2010

. Witzessin

Sel Lat

(15 marks)

ii. $Cd(Hg)/CdSO_4(aq)/Hg_2SO_4(s), Hg(s)$

(15 marks)

(b) Calculate the mean ionic activity coefficient of 0.1 M HCl at 25 ° C giving that the E_{cell} and E_{cell}^{θ} of the cell $H_2(1atm)/HCl(aq), AgCl(s)/Ag(s)$ are 0.3524 V and 0.2224 V respectively at the same temperature. [2.303 $\frac{RT}{E}$ =0.0591]

(Cell reaction: $AgCl(s) + 1/2H_2(g) \rightarrow Ag(s) + Cl^-(aq) + H^+(aq)$)

(40 marks)

(c) Discuss the variations on conductivity with respect to added volume of base during a strong acid – strong base titration.

the degree of dissociation (at)

(30 marks)

End of paper