EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE - 2001/2002
 (April/May.'2002)

 FIRST SEMESTER

 FIRST SEMESTER

 MT 201 - VECTOR SPACES AND MATRICES

 MT 201 - VECTOR SPACES AND MATRICES}

Answer all questions

Time: Three hours

1. (a) Explain what is meant by
i. a vector space;
ii. a subspace of a vector space.
(b) Let V be a vector space over a field \mathbf{F} and \mathbf{W} be a non-empty subset of V. Prove that W is a subspace of V if, and only if $a x+b y \in \mathbf{W}$ for every $x, y \in \mathbf{W}$ and for every $a, b \in \mathbf{F}$.
(c) Let $V=\{x \mid x \in \Re, \quad x>0\}$. Define addition and scalar multiplication as follows:

$$
\begin{array}{ll}
x \oplus y=x y & \text { for } \quad x, y \in V \\
r \odot x=x^{r} & \text { for } r \in \Re, \quad x \in V
\end{array}
$$

Show that (V, \oplus, \odot) is a vector space over \Re.
(d) Which of the following sets are subspaces of \Re^{3} ? In each case justify your answer.
i. $W_{1}=\left\{(x, y, z) \in \Re^{3} / x+y+z=1\right\}$
ii. $W_{3}=\left\{(x, y, z) \in \Re^{3} / x+y^{2}=0\right\}$
2. (a) Define the following terms:
i. A linearly independent set of vectors;
ii. A basis for a vector space.
(b) Prove that the non-zero vectors $v_{1}, v_{2}, \cdots, v_{n}$ of a vector space V over the field F are linearly dependent if and only if one of them say $v_{i}(2 \leq i \leq n)$ is a linear combination of the preceding vectors.
(c) i. State the Dimension Theorem.
ii. Let $U=<\{(1,1,0,-1),(1,2,3,0),(2,3,3,-1)\}>$ $W=<\{(1,2,2,-2),(2,3,2,-3),(1,3,4,-3)\}>$. Find
A. $\operatorname{dim}(U+W)$;
B. $\operatorname{dim}(U \cap W)$.
3. (a) Define
i. Range space $R(T)$;
ii. Null space $N(T)$;
of a linear transformation T from a vector space V into another vector space W.
Let T be a linear transformation from a finite dimensional vector space V into a finite dimensional vector space W. Prove that
the image of any linearly independent subset of V is a linearly independent subset of W if, and only if $N(T)=\{0\}$.
(b) Find $R(T)$ and $N(T)$ of the linear transformation $T: \Re^{3} \longrightarrow \Re^{3}$ defined by

$$
T(x, y, z)=(x-y+2 z, \quad 2 x+y, \quad-x-2 y+2 z)
$$

Verify the equation $\operatorname{dim} V=\operatorname{dim} N(T)+\operatorname{dim} R(T)$ for the above linear transformation.
(c) The linear transformation $T: \Re^{3} \longrightarrow \Re^{2}$ is defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}+2 x_{3}, \quad x_{1}-x_{3}\right)
$$

In $\Re^{2}, B_{1}=\{(1,1),(1,-1)\}$ is a basis, and in \Re^{3},
$B_{2}=\{(1,1,0),(0,1,1),(1,0,1)\}$ is a basis. Obtain
i. the matrix of T with respect to the standard basis of \Re^{3} and the basis B_{1} of \Re^{2}.
ii. the matrix of T with respect to the basis B_{2} of \Re^{3} and the standard basis of \Re^{2}.
iii. the matrix of T with respect to the basis B_{2} of \Re^{3} and the basis of \Re^{2}.
4. (a) Define the following terms as applied to an $n \times n$ matrix $A=\left(a_{i j}\right)$
i. Row space,
ii. Echelon form,
iii. Row reduced echelon form.
(b) Let A be an $n \times n$ matrix. Prove that,
i. row rank of A is equal to column rank of A;
ii. if B is an $n \times n$ matrix, obtained by performing an elementary row operation on A, then $r(A)=r(B)$.
(c) Find the rank of the matrix

$$
\left(\begin{array}{rrr}
1 & 2 & -3 \\
2 & 1 & 0 \\
-2 & -1 & 3 \\
-1 & 4 & -2
\end{array}\right)
$$

(d) Find the row reduced echelon form of the matrix

$$
\left[\begin{array}{rrrr}
5 & 6 & 8 & -1 \\
4 & 3 & 0 & 0 \\
10 & 12 & 16 & -2 \\
1 & 2 & 0 & 0
\end{array}\right]
$$

5. (a) Define the the following terms as applied to an $n \times n$ matrix $A=\left(a_{i j}\right)$.
i. Cofactor $A_{i j}$ of an element $a_{i j}$,
ii. Adjoint of A.

Prove that

$$
A \cdot(\operatorname{adj} A)=(\operatorname{adj} A) \cdot A=\operatorname{det} A \cdot I
$$

where I is the $n \times n$ identity matrix.
(b) If A and B are two $n \times n$ non-singular matrices, then prove that
i. $\operatorname{adj}(\alpha A)=\alpha^{n-1} \cdot \operatorname{adj} A$ for every real number α,
ii. $\operatorname{adj}(A B)=(\operatorname{adj} B)(\operatorname{adj} A)$,
iii. $\operatorname{adj}\left(A^{-1}\right)=(\operatorname{adj} A)^{-1}$,
iv. $\operatorname{adj}(\operatorname{adj} A)=(\operatorname{det} A)^{n-2} A$,
v. $\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))=(\operatorname{det} A)^{n^{2}-3 n+3} A^{-1}$.
(c) Find the inverse of the matrix

$$
\left[\begin{array}{rrr}
3 & 4 & 5 \\
1 & -1 & 2 \\
2 & 1 & 3
\end{array}\right]
$$

6. (a) State the Ne,cessary and Sufficient condition for a system of linear equations to be ci isistent.

The system of equ ations

$$
\begin{aligned}
x_{1}+3 x_{2}+x_{3} & =5 \\
3 x_{1}+2 x_{2}-4 x_{3}+7 x_{4} & =k+4 \\
x_{1}+x_{2}-x_{3}+2 x_{4} & =k-1
\end{aligned}
$$

is known to be consistent. Find the value of k and the general solution of the system.
(b) State Cramer's rule and use it to solve the following system of linear equations.

$$
\begin{aligned}
& x+2 y+3 z=10 \\
& 3 x-3 y+z=1 \\
& 3 x+y-2 z=9
\end{aligned}
$$

