# SPECIAL REPEAT EXAMINATION IN SCIENCE - 2007/2008 <br> THIRD YEAR, FIRST AND SECOND SEMESTER(FEB.,2010) <br> MT 301 -f GKROUAI THEORY ] 

## Answer all questions

Time: Three hours

1. Define the terms group and subgroup.
(a) Prove that in a finite group $G$, the order of each element divides the order of $G$. Hence prove that $x^{|G|}=e, \forall x \in G$, where $e$ is the identity element of $G$.
(b) Let $H$ be a subgroup of a group $G$. Prove that $H^{-1}=H$.

Is it true that, if $H^{-1}=H$, then $H$ is a subgroup of $G$ ? Justify your answer.
(c) i. Let $G$ be a group of order 27. Prove that $G$ contains a subgroup of order 3 .
ii. Let $H$ and $K$ be different subgroups of $G$, each of order 16. Prove that $24 \leq|H \cup K| \leq 31$.
2. Define the terms cyclic group and abelian group.
(a) Prove that
i. Every subgroup of a cyclic group is cyclic.

Is the converse true? Justify your answer.
ii. Every cyclic group is abelian.
(b) If $G$ is an infinite cyclic group generated by an element $a \in G$, then show that the powers of $a$ are distinct.
(c) Let $H$ be a subgroup of a group $G$, and let $a, b \in G$.

Prove the following:
i. If $H a \subseteq H b$, then $H a=H b$;
ii. If $H a \cap H b \neq \phi$, then $H a=H b$;
iii. $H a=H b$ if and only if $a b^{-1} \in H$.
3. Define normal subgroup of a group, homomorphism and isomorphism.
(a) Let $\phi: G \rightarrow G_{1}$ be a homomorphism. If $H \leq G$, then prove that $\phi(H) \leq G_{1}$. Further, if $H \unlhd G$, and $\phi$ is onto, then show that $\phi(H) \unlhd G_{1}$.
(b) i. Let $G_{1}$ be a group of all real $2 \times 2$ matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
such that $a d-b c \neq 0$ under matrix multiplication and $G_{2}$ be a group of all non-zero real numbers under multiplication. If $\phi: G_{1} \rightarrow G_{2}$ defined by

$$
\phi\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$

show that $\phi$ is a homomorphism.
ii. Given that $G$ is the group of all positive real numbers under multiplication and $G^{\prime}$ be the group of all real numbers under addition. Let $f: G \rightarrow G^{\prime}$ be defined by $f(x)=\log (x), \forall x \in G$. Show that $f$ is an isomorphism.
4. (a) State and prove the first isomorphism theorem.

Let $H$ and $K$ be two normal subgroups of a group of $G$, such that $K \subseteq H$. Prove the following:
i. $K \unlhd H$;
ii. $H / K \unlhd G / K$;
iii. $\frac{G / K}{H / K} \cong G / H$.
(b) What is meant by an index of a subgroup of a group $G$.

Let $H$ and $K$ be two subgroups of a finite group $G$ and $K \subseteq H$. Prove that $[G: K]=[G: H][H: K]$, where $[G: K]$ is the index of $K$ in $G$.
5. (a) Define the term $p$-group.
i. Prove that homomorphic image of a $p$-group is a $p$-group.
ii. Let $G$ be a finite abelian group and $p$ be a prime number such that $p$ is a divisor of the order of $G$. Prove that $G$ has an element of order $p$.
(b) Let $H$ and $K$ be two subgroups of a group $G$. Prove that $G$ is the direct sum of $H$ and $K$ if and only if
i. each $x \in G$ can be uniquely expressed in the form $x=h k$, where $h \in H, k \in$ $K$.
ii. $h k=k h, \forall h \in H, k \in K$.

Define permutation on $n$ symbols, cycle of order $r$ and transposition as applied to a permutation group.
(a) Prove that the permutation group on $n$ symbols $S_{n}$ is a finite group of order $n$ !. Is $S_{n}$ abelian for $n>2$ ? Justify your answer,
(b) Prove that every permutation in $S_{n}$ can be expressed as a product of transpositions. Hence show that an even permutation can be expressed as a product of even number of transpositions

Express the following permutation as a product of transpositions and hence determine whether it is odd or even.
$\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 2\end{array}\right)$
(c) Prove that the set of even permutations forms a normal subgroup of $S_{n}$. Hence show that $S_{n} / A_{n}$ is a cyclic group of order 2 .

