EASTERN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE 2001/2002

(April/May'2002)

FIRST SEMESTER

MT 203 - EIGENSPACE \& QUADRATIC FORMS

Answer all questions

Time : Two hours

1. Define the term "an eigenvalue" of a linear transformation.

Explain what is meant by "a linear transformation is diagonalizable."
(a) Prove that eigenvectors that corresponding to distinct eigenvalues of a linear transformation $T: V \longrightarrow V$ are linearly independent, where V is a vector space.
(b) Prove that if T is a linear transformation such that $T^{2}=I$ then the sum of all eigenvalues of T is an integer.

Find the eigenvalues for the linear transformation $T: \Re^{3} \longrightarrow \Re^{3}$ such that $T(x, y, z)=(x+2 y+2 z, x+2 y-z,-x+y+4 z)$ where $x, y, z \in \Re$.

Further find a non-singular matrix P such that $P^{-1} A P$ is diagonal, where A is the matrix representation of T.
2. (a) Define the term "skew- symmetric" as applied to an $n \times n$ matrix. Let A be a real skew-symmetric matrix with eigenvalue λ.
i. Prove that λ is zero or purely imaginary, and $\bar{\lambda}$ is also an eigenvalue of A.
ii. If $(A-\lambda I)^{2} z=0$ and $y=(A-\lambda I) z$ then by evaluating $(\bar{y})^{l} y$, show that $y=0$, where y and z are n-column vectors.
(b) Find an orthogonal transformation which reduces the following quadratic form to a diagonal form

$$
2 x_{1}^{2}+5 x_{2}^{2}+2 x_{3}^{2}+4 x_{1} x_{2}+4 x_{2} x_{3}+2 x_{1} x_{3} .
$$

3. Let λ_{1} and λ_{2} be two distinct roots of the equation $|A-\lambda B|=0$, where A and B are real symmetric matrices and let u_{1} and u_{2} be two vectors satisfying $\left(A-\lambda_{i} B\right) u_{i}=0$ for $i=1,2$. Prove that $u_{1}^{T} B u_{2}=0$.

Simultaneously reduce the following pair of quadratic forms

$$
\begin{aligned}
& \phi_{1}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 x_{2} x_{3}-2 x_{1} x_{3}-2 x_{1} x_{2} \\
& \phi_{2}=3 x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2}-2 x_{2} x_{3}-2 x_{1} x_{3}+2 x_{1} x_{2}
\end{aligned}
$$

4. What is meant by an "inner product" on a vector space?
(a) Prove that, for any vectors x, y in an inner product space,

$$
|<x, y>| \leq\|x\|\|y\|
$$

(b) State Gram-Schmidt process and use it to find the orthonormal set for span of S in \Re^{3}, where $S=\{(1,1,1),(0,1,1),(0,0,1)\}$.
(c) Let X be an inner product space and M be a finite dimensional subspace of X. Prove that $X=M \oplus M^{\perp}$, where M^{\perp} is orthogonal complement of M and \oplus denotes the direct sum.

