

LIBRARD

學

EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

SPECIAL REPEAT EXAMINATION IN SCIENCE - 2007/2008 THIRD YEAR, FIRST AND SECOND SEMESTER (Feb., 2010) MT 310 - FLUID MECHANICS

Answer all Questions

Time: Two hours

- 1. (a) Derive the continuity equation for an incompressible fluid flow in the form $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$ in cartesian coordinates, where u, v and w are the cartesian components of the velocity \underline{q} .
 - (b) Show that ^k/_{r⁵} (3x² - r², 3xy, 3xz), where r² = x² + y² + z² and k is a constant, represents the velocity field in a possible fluid motion. Show also that this motion is irrotational.
 - (c) Find the velocity potential and the equation of stream lines for the velocity field given in (b).
 - 2. (a) State the following:
 - i. Milne-Thomson circle theorem,
 - ii. the theorem of Blasius.
 - (b) Let $\omega = (u iv)z$ be the complex potential of an undistributed motion.
 - i. If a circular cylinder is placed in the above uniform motion, find the resultant complex potential.
 - ii. If the pressure thrusts on the given cylinder are represented by a force (X, Y) and a couple of moment M about the origin, where action of X

and Y are directed along the real and imaginary axis, respectively then what would be expected about the motion of the cylinder?

- 3. (a) Let a three dimensional doublet of strength μ be situated at the origin. Show that the velocity potential ϕ at a point $P(r, \theta, \psi)$, in spherical polar coordinates, due to the doublet can be written in the form $\phi = \mu r^{-2} \cos \theta$.
 - (b) Three dimensional doublets of strength μ_1, μ_2 are situated at A_1 and A_2 whose cartesian coordinates are $(0, 0, c_1)$ and $(0, 0, c_2)$, their axes being directed towards and away from the origin respectively. Show that the condition for no transport of fluid across the surface of sphere $x^2 + y^2 + z^2 = c_1c_2$ is $\frac{\mu_2}{\mu_1} = \left(\frac{c_2}{c_1}\right)^{\frac{3}{2}}$.
- (a) Suppose that a solid boundary Γ of a large spherical surface contains fluid in motion and encloses closed rigid surface S_m, m = 1, 2, ..., k. If fluid is at rest at infinity, prove that the kinetic energy of the moving fluid is given by

$$T = \frac{1}{2}\rho \int_{V} q^{2} dV = \frac{1}{2}\rho \sum_{m=1}^{k} \int_{Sm} \phi \frac{\partial \phi}{\partial n} dS,$$

where the normal n at each surface element dS being drawn outwards from the fluid and the notations given above are in usual meaning.

(b) A solid sphere of radius a with center O is moving with uniform velocity $U_{\underline{i}}$ in an incompressible fluid of infinite extent, which is at rest at infinity, where \underline{i} is the unit vector along the axis of symmetry Ox. Suppose that a velocity potential at $P(r, \theta, \psi)$, $r \ge a$, is in the form of $\phi(r, \theta) = Ar^{-2}\cos\theta$, which satisfies the axially symmetric form of Laplace's equation in spherical polar coordinates, show that $A = \frac{1}{2}Ua^3$.

Hence prove that the total kinetic energy of the sphere and fluid is given by $\frac{1}{2}\left(M+\frac{1}{2}M'\right)U^2$, where M and M' are the masses of the sphere and fluid displaced, respectively.

Furthermore, obtain the equation of streamlines.