(FEBRUARY 2010)

PH 301 ELECTRONICS II

Time: 01 hour.

Answer ALL Questions

1. Describe the properties of an ideal operational amplifier. Discuss how an operational amplifier can be used as:
(a) An inverting amplifier
(b) An integrator

Use Operational amplifier summers and integrators to solve the following differential equation.

$$
\frac{d^{2} V}{d t^{2}}+3 \frac{d V}{d t}+\frac{V}{4}=V_{0} \cos \omega t
$$

The circuit shown in the figure is a voltage comparator

(a) Name the components labeled X, Y, R_{2} and R_{3}.
(b) Explain the purpose of R_{2} and R_{3} in this circuit.
(c) Discuss the output voltage V_{0}, of the circuit when
(i) The voltage at A is greater than the voltage at B .
(ii) The voltage at A is less than the voltage at B .
(d) If the circuit has a supply voltage of 12 V and draws a current of 15 mA ;

Calculate the power that the circuit consumes.
2. Explain briefly how a bipolar and a unipolar transistor works. Discuss the input and output characteristics of a transistor.
Find the possible range of values for Ic and Vc in the following silicon transistor circuit, where β is in the range of 200 to 250 .

Given that $V_{c c}=15 \mathrm{~V}, R_{1}=1 \mathrm{M} \Omega, R_{2}=500 \mathrm{k} \Omega, R_{c}=10 \mathrm{k} \Omega, R_{b}=10 \mathrm{k} \Omega$ and $V_{B E}=0.7 \mathrm{~V}$.

