EASTERN UNIVERSITY, SRI LANKA 0 4 JUN 201 THIRD EXAMINATION IN SCIENCE - 2007/2008

FIRST SEMESTER (SPECIAL REPEAT)

(FEBRUARY 2010)

PH 302 THERMODYNAMICS

Time: 01 hour.

Answer ALL Questions

- 1. Distinguish adiabatic and isothermal processes. An ideal gas may be defined as one whose equation of state is, PV = nRT. and whose internal energy is only a function of temperature. Show that for an ideal gas,
 - (a) The quantity PV^{γ} is constant during an adiabatic process (assume that $\gamma = \frac{C_{P}}{C_{T}}$ is constant)

(b) The work done in adiabatic expansion of the gas from (P_1, V_1) to (P_2, V_2)

is,
$$\frac{1}{\gamma - 1} (P_1 V_1 - P_2 V_2)$$
.

(c) The heat absorbed by one mole of gas in an isothermal expression from

volume
$$V_1$$
 to V_2 is $RT \ln\left(\frac{V_2}{V_1}\right)$.

Where other symbols have their usual meanings.

A diatomic gas ($\gamma = 1.4$) of volume $1.0m^3$ at a pressure of $1.01 \times 10^5 Nm^{-2}$ is compressed adiabatically until the volume is reduced to $0.4m^3$. Find the work done on the gas during the compression.

- 2. What do you mean by a "Carnot engine"? Define the term "Thermal efficiency" and write down the mathematical equation for thermal efficiency.
 - (a) A Carnot's engine working between $27^{\circ}C$ and $127^{\circ}C$ takes up 800J of heat from the reservoir in one cycle. What is the work done by the engine?
 - (b) Write down the relations for Helmholtz free energy (F), Enthalpy (H) and Gibb's function (G) then drive Mazwell's four thermodynamics relations.