

THIRD EXAMINATION IN SCIENCE - 2008/2009

FIRST SEMESTER (PROPER)

(FEBRUARY 2010)

PH 303 NUCLEAR PHYSICS

Time: 01 hour.
Answer ALL Questions

You may find the following data useful:
$1 \mathrm{MeV}=1.6 \times 10^{-13} \mathrm{~J}$
$1 \mathrm{amu}=931.5 \mathrm{MeV} / \mathrm{c}^{2}$
Avogadro number $=6.023 \times 10^{23}$

1. Define the terms Radioactive decay, Half life and Mean life of a radioactive sample.
(a) The fundamental law of radioactive decay is written as:

$$
\frac{d N}{d t}=-\lambda N
$$

Show that the decay constant λ for a given material is related to its half life $T_{\frac{1}{2}}$.

A radioactive source contains $1 \mu g$ of uranium $\left(U^{235}\right)$. The source is estimated to emit a total of 2000α particles per second in all directions. Calculate the half-life of uranium.
(b) Consider the decay scheme: $X \rightarrow Y \rightarrow Z$ (stable)

The decay constant of X and Y are λ_{1} and $\lambda_{2}\left(\lambda_{2}>\lambda_{1}\right)$ respectively. Initially the number of atoms at Y is zero. Show that it would be maximum at $\mathrm{t}=\mathrm{t}_{\mathrm{m}}$ where:

$$
t_{m}=\left(\lambda_{2}-\lambda_{1}\right)^{-1} \ln \left(\frac{\lambda_{2}}{\lambda_{1}}\right)
$$

Consider the decay scheme: $X \xrightarrow{\beta} Y \xrightarrow{\beta} Z$ (stable)
A freshly purified sample of X^{210} weighs $2.00 \times 10^{-10} \mathrm{gm}$ at time $t=0$. If the sample is not disturbed, calculate the time at which the greatest number of atoms of Y will present and find this number.
(Half-life of $X=5$ days and Half-life of $Y=138$ days).
2. The binding energy E_{B} of a nucleus by the semi-empirical mass formula is given by:

$$
\begin{aligned}
& B(A, Z)= a_{v} A-a_{s} A^{2 / 3}-a_{c} \frac{Z(Z-1)}{A^{1 / 3}}-a_{A} \frac{(A-2 Z)^{2}}{A} \pm \delta, \\
&+C_{p} A^{-3 / 4} \\
& \text { where } \delta=\begin{array}{cc}
0 & \text { oven 'A' } A ' \\
0 & -C_{p} A^{-3 / 4} \\
\text { - even 'A' }
\end{array}
\end{aligned}
$$

Describe briefly the 'origin' of the various terms in the Semi-Empirical Mass Formula.
(a) Show that the mass of an atom can be written as:

$$
M_{A}(A, Z)=\alpha A+\beta Z+\gamma Z^{2} \mp \delta \text {, where } \alpha, \beta, \gamma \text { and } \delta \text { are function of } A
$$

(b) Show that the mass of any odd A isobar nuclide can be given as:

$$
M_{A}(A, Z)=M_{A}\left(A, Z_{0}\right)+\gamma\left(Z-Z_{0}\right)^{2}
$$

where Z_{0} is the atomic number of the most stable isobar.

Calculate the energy released for the alpha particle emitted in the process:

$$
U_{92}^{235} \rightarrow \alpha+T h_{90}^{231}
$$

where the binding energy of the alpha particle is 28.3 MeV and you may assume the following values (in MeV) for the five coefficients, volume 15.5; surface 16.8; Coulomb 0.72 ; asymmetry 23 and pairing 34 , in the semi-empirical expression for the binding energy of heavy nuclei.

