EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE 2001/2002

(APRIL' 2002)

FIRST SEMESTER

ST 201 - STATISTICAL INFERENCE I LIBRARY ANSWER ALL QUESTIONS

Time : Two Hours

2 6 SEP 2002

South Unit

Q1. (a) Define

- (i) A maximum likelihood estimator
- (ii) An unbiased estimator
- (b) Let X be the number of successes in a binomial experiment with n trials and the probability of success p. Find the maximum likelihood estimate for p and show that it is unbiased. Derive the variance of this estimator. Is this estimator consistent? Justify your answer.
- (c) A random sample of *n* observations X_1, X_2, \ldots, X_n is taken on a random variable X which has a normal distribution with mean μ and variance σ^2 . Assuming σ^2 is known, find.
 - (i) The method of moments estimate for μ ;
 - (ii) The maximum likelihood estimate for μ .
- Q2. A random sample X_1 , X_2 ,, X_n is taken from a poisson distribution with mean λ and it is required to estimate $\theta = \lambda^2$.
 - (i) Show that the sample mean, \overline{X} , is a sufficient statistic for θ .
 - (ii) Evaluate $E(\overline{X})$ and $E(\overline{X}^2)$ and hence find an unbiased estimator of θ based on \overline{X} .
 - (iii) Find the Cramer Rao lower bound for the variance of unbiased estimators of θ .
 - (iv) Find the efficiency of your estimator.

- Q3. (a) Describe the Neyman Pearson approach to testing one simple hypothesis against another simple hypothesis.
 - (b) The number of complaints in successive weeks about a certain product are denoted by X₁, X₂,, X_n. These random variables are independent, Poisson with mean μθ, where μ is known and θ is unknown. It is required to test the null hypothesis Ho: θ = 1 against the alternative H₁: θ = 2.
 - (i) A test has a critical region $\{X_1, X_2, ..., X_n \text{ such that } \Sigma x_i > m\}$ where *m* has been chosen so that the test has the required significance. level. Show that this is the Neyman - Pearson test.
 - (ii) State, with reasons whether this test is uniformly most powerful for the hypothesis Ho: $\theta = 1$ against the alternative H₁: $\theta > I$.
 - (iii) Suppose that $\mu = \frac{1}{2}$, n = m = 2. Find the significance level and power of the test at $\theta = 2$
- Q4. (a) Define

(i) Type 1 error and(ii) Type 11 error₄.

- (b) A coin is tossed 5 times. Let the probability of heads at each throw be p. To test $H_0: p = \frac{1}{2}$ against the alternative $H_1 = p = \frac{1}{2}$, the critical region is taken to be x < 2, where x is the number of heads obtained in the 5 throws. Find type 1 and type 11 errors and the power of the test.
- (c) On the basis of the results obtained from a random sample of 100 men from a particular district, the 95% confidence interval for the mean height of the men in the district is found to be (177.22 cm, 179.18 cm). Find the value of \bar{x} , the mean of the sample, and σ , the standard deviation of the normal population from which the sample is drawn. Calculate the 98% confidence interval for the mean height.