EASTERN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE $2001 / 2002$
(APRIL' 2002)
FIRST SEMESTER
ST 201 - STATISTICAL INFERENCE I
ANSWER ALL QUESTIONS
Time: Two Hours

Q1. (a) Define
(i) A maximum likelihood estimator
(ii) An unbiased estimator
(b) Let X be the number of successes in a binomial experiment with n trials and the probability of success p. Find the maximum likelihood estimate for p and show that it is unbiased. Derive the variance of this estimator. Is this estimator consistent? Justify your answer.
(c) A random sample of n observations $X_{1}, X_{2}, \ldots \ldots, X_{n}$ is taken on a random variable X which has a normal distribution with mean μ and variance σ^{2}. Assuming σ^{2} is known, find.
(i) The method of moments estimate for μ;
(ii) The maximum likelihood estimate for μ.

Q2. A random sample $X_{1}, X_{2}, \ldots \ldots, X_{n}$ is taken from a poisson distribution with mean λ and it is required to estimate $\theta=\lambda^{2}$.
(i) Show that the sample mean, \bar{X}, is a sufficient statistic for θ.
(ii) Evaluate $E(\bar{X})$ and $E\left(\bar{X}^{2}\right)$ and hence find an unbiased. estimator of θ based on \bar{X}.
(iii) Find the Cramer - Rio lower bound for the variance of unbiased estimators of θ ।
(iv) Find the efficiency of your estimator.

Q3. (a) Describe the Neyman - Pearson approach to testing one simple hypothesis against another simple hypothesis.
(b) The number of complaints in successive weeks about a certain product are denoted by $X_{1}, X_{2}, \ldots \ldots, X_{n}$. These random variables are independent, Poisson with mean $\mu \theta$, where μ is known and θ is unknown. It is required to test the null hypothesis Ho: $\theta=1$ against the alternative $\mathrm{H}_{1}: \theta=2$.
(i) A test has a critical region $\left\{X_{1}, X_{2}, \ldots X_{n}\right.$ such that $\left.\sum x_{i}>m\right\}$ where m has been chosen so that the test has the required significance. level. Show that this is the Neyman - Pearson test.
(ii) State, with reasons whether this test is uniformly most powerful for the hypothesis Ho: $\theta=1$ against the alternative $\mathrm{H}_{1}: \theta>1$.
(iii) Suppose that $\mu=1 / 2, n=m=2$. Find the significance level and power of the test at $\theta=2$

Q4. (a) Define
(i) Type 1 error and
(ii) Type 11 error $\%$
(b) A coin is tossed 5 times. Let the probability of heads at each throw be p . To test $H_{0}: p=\frac{1}{2}$ against the alternative $H_{1}=p=\frac{1}{2}$, the critical region is taken to be $x<2$, where x is the number of heads obtained in the 5 throws. Find type 1 and type 11 errors and the power of the test.
(c) On the basis of the results obtained from a random sample of 100 men from a particular district, the 95% confidence interval for the mean height of the men in the district is found to be
$(177.22 \mathrm{~cm}, 179.18 \mathrm{~cm})$. Find the value of \bar{x}, the mean of the sample, and σ, the standard deviation of the normal population from which the sample is drawn. Calculate the 98% confidence interval for the mean height.

