# EASTERN UNIVERSITY,SRI LANKA <br> SECOND EXAMINATION IN SCIENCE 2003/2004 <br> Nov./Dec. 2004 <br> FIRST SEMESTER <br> MT 201 - VECTOR SPACES AND MATRICES 

## Answer all questions

## Time: 3 hours

1. (a) Explain what is meant by a vector space.
(b) Let $V=\{f / f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)>0 \forall x \in \mathbb{R}\}$. For any $f, g \in \mathrm{~V}$ and for any $\alpha \in \mathbb{R}$ define an addition $\oplus$ and a scalar multiplication $\odot$ as follows:

$$
(f \oplus g)(x)=f(x) \cdot g(x) \quad \forall x \in \mathbb{R}
$$

and

$$
(\alpha \odot f)(x)=\{f(x)\}^{\alpha} \quad \forall x \in \mathbb{R}
$$

Prove that $(V, \oplus, \odot)$ is a vector space over the set of real numbers $\mathbb{R}$.
(c) An attempt is made to turn the set $\mathbb{Z}^{2}$ of pairs of integers into a vector space over the field $\mathbb{R}$ by defining:

$$
\begin{gathered}
(u, v)+\left(u^{\prime}, v^{\prime}\right)=\left(u+u^{\prime}, v+v^{\prime}\right) \\
\alpha(u, v)=(\lfloor\alpha\rfloor u,\lfloor\alpha\rfloor v)
\end{gathered}
$$

where $\lfloor\alpha\rfloor$ is the integer part of $\alpha$ and $u, u^{\prime}, v, v^{\prime} \in \mathbb{Z}$. Is this is a vector space?

Justify your answer.
2. (a) Define the followings:
i. a linear independent set of vectors;
ii. a basis for a vector space;
iii. direct sum of two subspaces $W_{1}$ and $W_{2}$ of a vector space $V$.
(b) Let $S, W$ be two subspaces of a vector space $V$ over the field $\mathbb{F}$. Prove that; $V$ is a direct sum of $S$ and $W$ iff each vector $v \in V$ has a unique representation $v=s+w$ for some $s \in S, w \in W$.
Let $U$ and $W$ be two subspaces of $\mathbb{R}^{3}$ defined by
$U=\{(a, b, c) / a=b=c, a, b, c \in \mathbb{R}\}$ and $W=\{(0, p, q) / p, q \in \mathbb{R})\}$.
Show that; $\mathbb{R}^{3}=U \oplus W$.
(c) i. Let $S$ be any non-empty linearly independent subset of a vector space $V$ over the field $\mathbb{F}$. What is meant by saying that " $S$ spans $V$ ".
Prove that; for any $v \in V$ the set $S \cup\{v\}$ is linearly independent iff $v \notin\langle S\rangle$.
ii. Prove that; any linearly independent subset of a finite dimensional vector space $V$ can be extended to a basis of $V$.
3. (a) State and prove the Dimension theorem for two subspaces of a finite dimensional vector space.
(b) Let $V$ be a finite dimensional vector space and $W$ be a subspace of $V$. Prove that; the quotient space $V / W$ is also finite dimensional and $\operatorname{dim}(V / W)=\operatorname{dim} V-\operatorname{dim} W$.
(c) If $W_{1}=\langle\{(1,0,2),(1,2,2)\}\rangle$ and $W_{2}=\langle\{(1,1,0),(0,1,1\}\rangle$ are subspaces of $\mathbb{R}^{3}$. Find
i. $\operatorname{dim}\left(W_{1}+W_{2}\right)$;
ii. $\operatorname{dim}\left(W_{1} \cap W_{2}\right)$;
and verify that

$$
\operatorname{dim}(\mathrm{W} 1+\mathrm{W} 2)=\operatorname{dim} W 1+\operatorname{dim} W 2-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

4. (a) Let $T$ be a linear transformation from a vector space $V$ in to another vector space $W$. Define
i. range space $R(T)$ and
ii. null space $N(T)$.
(b) Find $R(T), N(T)$ of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, defined by $T(x, y, z)=(x+2 y-z, y+z, x+y-2 z), \quad \forall(x, y, z) \in \mathbb{R}^{3}$. Verify the equation

$$
\operatorname{dim}\left(\mathbb{R}^{3}\right)=\operatorname{dim}(\mathrm{R}(\mathrm{~T}))+\operatorname{dim}(\mathrm{N}(\mathrm{~T}))
$$

(c) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by

$$
T(x, y)=(x+2 y, 2 x-y,-x) .
$$

i. Find the matrix representation of $T$ with respect to the standard basis of $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$.
ii. Let $B_{1}=\{(0,1),(1,1)\}$ be a basis of $\mathbb{R}^{2}$ and $B_{2}=\{(0,0,1),(0,1,1),(1,1,1$ be a basis of $\mathbb{R}^{3}$. Find the matrix representation of $T$ with respect to the basis $B_{1}$ and $B_{2}$.
5. Define the term "non-singular" matrix.

Let $J$ be the $n \times n$ real matrix with every entry equal to 1 , so that $J^{2}=n J$, and let $A=\alpha I_{n}+\beta J$, where $\alpha, \beta$ are real numbers.
(a) Show that $\operatorname{det} A=\alpha^{n-1}(\alpha+n \beta)$.
(b) If $\alpha \neq 0$ and $\alpha \neq-n \beta$, prove that $A$ is non-singular by finding an inverse for it of the form $\frac{1}{\alpha}\left(I_{n}+\gamma J\right)$.
Determine the inverse of the matrix

$$
\left(\begin{array}{lllll}
7 & 5 & 5 & 5 & 5 \\
5 & 7 & 5 & 5 & 5 \\
5 & 5 & 7 & 5 & 5 \\
5 & 5 & 5 & 7 & 5 \\
5 & 5 & 5 & 5 & 7
\end{array}\right)
$$

6. (a) State the necessary and sufficient condition for a linear equations to be consistent.
Find the condition which must be satisfied by $y_{1}, y_{2}, y_{3}, y_{4}$ in order that the equations

$$
\begin{gathered}
x_{1}-x_{3}+3 x_{4}+x_{5}=y_{1} \\
2 x_{1}+x_{2}-2 x_{4}-x_{5}=y_{2} \\
x_{1}+2 x_{2}+2 x_{3}+4 x_{5}=y_{3} \\
x_{2}+x_{3}+5 x_{4}+6 x_{5}=y_{4}
\end{gathered}
$$

shall have a solution $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$. Find all the solutions for

$$
y_{1}=-3, y_{2}=5, y_{3}=6, y_{4}=-2
$$

(b) State and prove Crammer's rule for $3 \times 3$ matrix and use it to solve;

$$
\begin{array}{r}
2 x-5 y+2 z=7 \\
x+2 y-4 z=3 \\
3 x-4 y-6 z=5 .
\end{array}
$$

