EASTERN UNIVERSITY,SRI LANKA SECOND EXAMINATION IN SCIENCE 2003/2004 Nov./Dec. 2004

FIRST SEMESTER

MT 201 - VECTOR SPACES AND MATRICES

Answer all questions Time: 3 hours

- 1. (a) Explain what is meant by a vector space.
 - (b) Let $V = \{f/f : \mathbb{R} \longrightarrow \mathbb{R}, f(x) > 0 \ \forall x \in \mathbb{R}\}$. For any $f, g \in V$ and for any $\alpha \in \mathbb{R}$ define an addition \oplus and a scalar multiplication \odot as follows:

$$(f \oplus g)(x) = f(x).g(x) \quad \forall x \in \mathbb{R}$$

and

$$(\alpha \odot f)(x) = \{f(x)\}^{\alpha} \quad \forall x \in \mathbb{R}.$$

Prove that (V, \oplus, \odot) is a vector space over the set of real numbers \mathbb{R} .

(c) An attempt is made to turn the set Z² of pairs of integers into a vector space over the field R by defining:

$$(u, v) + (u', v') = (u + u', v + v')$$

$$\alpha(u,v) = (\lfloor \alpha \rfloor u, \lfloor \alpha \rfloor v)$$

11 H = (((1,0.2), (12, 24)) and ((2, 24))

where $\lfloor \alpha \rfloor$ is the integer part of α and $u, u', v, v' \in \mathbb{Z}$. Is this is a vector space?

Justify your answer.

- 2. (a) Define the followings:
 - i. a linear independent set of vectors;
 - ii. a basis for a vector space;
 - iii. direct sum of two subspaces W_1 and W_2 of a vector space V.
 - (b) Let S, W be two subspaces of a vector space V over the field F. Prove that; V is a direct sum of S and W iff each vector v ∈ V has a unique representation v = s + w for some s ∈ S, w ∈ W. Let U and W be two subspaces of R³ defined by U = {(a, b, c)/a = b = c, a, b, c ∈ R} and W = {(0, p, q) / p, q ∈ R)}. Show that; R³ = U ⊕ W.
 - (c) i. Let S be any non-empty linearly independent subset of a vector space V over the field F. What is meant by saying that "S spans V".
 Prove that; for any v ∈ V the set S ∪ {v} is linearly independent iff v ∉ ⟨S⟩.
 - ii. Prove that; any linearly independent subset of a finite dimensional vector space V can be extended to a basis of V.
 - 3. (a) State and prove the Dimension theorem for two subspaces of a finite dimensional vector space.
 - (b) Let V be a finite dimensional vector space and W be a subspace of V. Prove that; the quotient space V/W is also finite dimensional and $\dim(V/W) = \dim V \dim W$.
 - (c) If $W_1 = \langle \{(1,0,2), (1,2,2)\} \rangle$ and $W_2 = \langle \{(1,1,0), (0,1,1)\} \rangle$ are subspaces of \mathbb{R}^3 . Find
 - i. $\dim(W_1 + W_2);$
 - ii. dim $(W_1 \cap W_2)$;

and verify that

 $\dim(W1 + W2) = \dim W1 + \dim W2 - \dim(W_1 \cap W_2).$

- 4. (a) Let T be a linear transformation from a vector space V in to another vector space W. Define
 - i. range space R(T) and
 - ii. null space N(T).
 - (b) Find R(T), N(T) of the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$, defined by $T(x, y, z) = (x + 2y z, y + z, x + y 2z), \quad \forall (x, y, z) \in \mathbb{R}^3$. Verify the equation

 $\dim(\mathbb{R}^3) = \dim(\mathrm{R}(\mathrm{T})) + \dim(\mathrm{N}(\mathrm{T}))$

(c) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation defined by

T(x, y) = (x + 2y, 2x - y, -x).

- i. Find the matrix representation of T with respect to the standard basis of \mathbb{R}^2 and \mathbb{R}^3 .
- ii. Let B₁ = {(0,1), (1,1)} be a basis of R² and B₂ = {(0,0,1), (0,1,1), (1,1,1)
 be a basis of R³. Find the matrix representation of T with respect to the basis B₁ and B₂.
- 5. Define the term "non-singular" matrix.

Let J be the $n \times n$ real matrix with every entry equal to 1, so that $J^2 = nJ$, and let $A = \alpha I_n + \beta J$, where α, β are real numbers.

- (a) Show that $det A = \alpha^{n-1}(\alpha + n\beta)$.
- (b) If $\alpha \neq 0$ and $\alpha \neq -n\beta$, prove that A is non-singular by finding an inverse for it of the form $\frac{1}{\alpha}(I_n + \gamma J)$.

Determine the inverse of the matrix

$$\begin{pmatrix} 7 & 5 & 5 & 5 & 5 \\ 5 & 7 & 5 & 5 & 5 \\ 5 & 5 & 7 & 5 & 5 \\ 5 & 5 & 7 & 5 & 5 \\ 5 & 5 & 5 & 7 & 5 \\ 5 & 5 & 5 & 5 & 7 \end{pmatrix}$$

6. (a) State the necessary and sufficient condition for a linear equations to be consistent.

Find the condition which must be satisfied by y_1, y_2, y_3, y_4 in order that the equations

 $x_1 - x_3 + 3x_4 + x_5 = y_1$ $2x_1 + x_2 - 2x_4 - x_5 = y_2$ $x_1 + 2x_2 + 2x_3 + 4x_5 = y_3$ $x_2 + x_3 + 5x_4 + 6x_5 = y_4$

shall have a solution x_1, x_2, x_3, x_4, x_5 . Find all the solutions for

$$y_1 = -3, y_2 = 5, y_3 = 6, y_4 = -2$$

(b) State and prove Crammer's rule for 3×3 matrix and use it to solve;

$$2x - 5y + 2z = 7$$

$$x + 2y - 4z = 3$$

$$3x - 4y - 6z = 5.$$