EASTERN UNIVERSITY, SRI LANKA
 THIRD EXAMINATION IN SCIENCE, (2003/2004)
 (November/December, 2004)
 FIRST SEMESTER
 PROPER \& REPEAT
 MT 302-COMPLEX ANALYSIS

Answer all questions

Q1. (a) Let $A \subseteq \mathbb{C}$ be an open set and let $f: A \rightarrow \mathbb{C}$. Define what is meant by f being analytic at $z_{0} \in A$.
(b) Let $A \subseteq \mathbb{C}$ be an open set and let $f: A \rightarrow \mathbb{C}$ be differentiable at some $z_{0}=x_{0}+i y_{0} \in A$. If $f(z)=u(x, y)+i v(x, y)$, then prove that the partial derivatives of $u(x, y)$ and $v(x, y)$ satisfy the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} ; \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

$$
\begin{equation*}
\text { at } z_{0}=x_{0}+i y_{0} \tag{50}
\end{equation*}
$$

(c) Find the set of complex numbers at which the function

$$
f(x+i y)=2 x y+i\left(x+\frac{2}{3} y^{3}\right)
$$

is differentiable.

Q2. (a) (i) Define what is meant by a path $\gamma:[\alpha, \beta] \rightarrow \mathbb{C}$.
(ii) For a path γ and a continuous function $f: \gamma \rightarrow \mathbb{C}$, define $\int_{\gamma} f(z) d z$.
(b) Let $a \in \mathbb{C}, r>0$, and $n \in \mathbb{Z}$. Show that

$$
\int_{C(a ; r)}(z-a)^{n} d z= \begin{cases}0, & n \neq-1 \\ 2 \pi i, . & n=-1\end{cases}
$$

where $C(a ; r)$ denotes a positively oriented circle with centre a and radius r.
(State but do not prove any results you may assume).
(c) State the Cauchy's Integral Formula.
[20]
By using the Cauchy's Integral Formula compute the following integrals:
(i) $\int_{C(0 ; 3)} \frac{e^{z t}}{z^{2}+1} d z, \quad t>0$;
(ii) $\int_{C(0 ; 3)} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z$
where $C(0 ; 3)$ denotes a positively oriented circle with centre 0 and radius 3 .

Q3. (a) State the Mean Value Property for Analytic Functions. [10]
(b) (i) Define what is meant by the function $f: \mathbb{C} \rightarrow \mathbb{C}$ being entire.
(ii) Prove Liouville's Theorem: If f is entire and

$$
\begin{equation*}
\frac{\max \{|f(t)|:|t|=r\}}{r} \rightarrow 0, \quad \text { as } r \rightarrow \infty \tag{30}
\end{equation*}
$$

then f is constant.
(State any results you use without proof)
(c) Prove the Maximum-Modulus Theorm: Let f be analytic in an open connected set A. Let γ be a simple closed path that is contained, together with its inside, in A. Let

$$
M:=\sup _{z \in \gamma}|f(z)| .
$$

If there exists z_{0} inside γ such that $\left|f\left(z_{0}\right)\right|=M$, then f is constant throughout A. Consequently, if f is not constant in A, then

$$
|f(z)|<M \quad \forall z_{0} \text { inside } \gamma .
$$

(State any theorem you use without proof)

Q4. (a) Let $\delta>0$ and let $f: D^{*}\left(z_{0} ; \delta\right) \rightarrow \mathbb{C}$, where $D^{*}\left(z_{0} ; \delta\right):=\left\{z: 0<\left|z-z_{0}\right|<\delta\right\}$. Define what is meant by
(i) f having a singularity at z_{0};
(ii) the order of f at z_{0};
(iii) f having a pole or zero at z_{0} of order m;
(iv) f having a simple pole or simple zero at z_{0}.
(b) Prove that

$$
\operatorname{ord}\left(f ; z_{0}\right)=m
$$

if and only if

$$
f(z)=\left(z-z_{0}\right)^{m} g(z), \quad z \dot{\in} D^{*}\left(z_{0} ; \delta\right)
$$

for some $\delta>0$, where g is analytic in $D\left(z_{0} ; \delta\right)$ and $g\left(z_{0}\right) \neq 0$.

Q5. (a) Prove that if f has a simple pole at z_{0}, then

$$
\begin{equation*}
\operatorname{Res}\left(f ; z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f\left(z_{0}\right) \tag{30}
\end{equation*}
$$

(b) Let f be analytic in $\{z: \operatorname{Im}(z) \geq 0\}$, except possibly for finitely many singularities, none on the real axis. Suppose there exist $M, R>0$ and $\alpha>1$ such that

$$
|f(z)| \leq \frac{M}{|z|^{\alpha}}, \quad|z| \geq R \text { with } \operatorname{Im}(z) \geq 0
$$

Then prove that

$$
I:=\int_{-\infty}^{\infty} f(x) d x
$$

converges (exists) and

$$
I=2 \pi i \times \text { Sum of Residues of } f \text { in the upper half plane. }
$$

Hence evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{4}} d x .
$$

(You may assume without proof the Residue Theoerem).

Q6. (a) State the Principle of the Argument Theorem.
(b) Prove Rouche's Theorem: Let γ be a simple closed path in an open starset A. Suppose that
(i) f, g are analytic in A except for finitely many poles, none lying on γ.
(ii) f and $f+g$ have finitely many zeros in A.
(iii) $|g(z)|<|f(z)|, \quad z \in \gamma$. Then

$$
Z P(f+g ; \gamma)=Z P(f ; \gamma)
$$

where $Z P(f+g ; \gamma)$ and $Z P(f ; \gamma)$ denote the number of zeros - number of poles inside γ of $f+g$ and f respectively, where each is counted as many times as its order.
(c) State the Fundamental theorem of Algebra.
(d) Prove that the equation $2 e^{z}+z+3=0$ has exactly one root in the left-half plane.

