2 5 EET 2005

EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE 2003/2004

FIRST SEMESTER

Oct/Nov 2004

ST 201 - STATISTICAL INFERENCE - 1

Answer all questions

Time : Two hours

- 1. (a) State and prove the Cramer-Rao inequality.
 - (b) Given the probability density function,
 - $f(x,\theta) = [\pi\{1 + (x \theta)^2\}]^{-1}$; $-\infty < x < \infty$, $-\infty < \theta < \infty$. Show that the Cramer- Rao lower bound of variance of an unbiased estimator of θ is $\frac{2}{n}$, where n is the size of the random sample from this distribution.
- 2. A particular type of a component is tested repeatedly until it fails. X, the number of tests until it fails, is found to have a geometric distribution with probability mass function

 $P(X = x) = p(1-p)^{x-1}$ $(x = 1, 2, \dots)$, where p is a parameter. A random sample of n components is tested and the observed numbers of tests until failure are X_1, X_2, \dots, X_n

(a) Using moment generating function, or otherwise, show that $Y = \sum_{i=1}^{n} X_i$ has a negative binomial distribution with probability function

 $P(Y=y) = \begin{pmatrix} y-1\\ n-1 \end{pmatrix} p^n (1-p)^{y-n} \quad ; \quad y=n, n+1, \cdots, \text{ where } n \text{ and } p$ are parameters.

1

- (b) Show that Y is sufficient statistic for p.
- (c) For $i = 1, 2, \dots, n$, define the random variable V_i as follows: $V_i \begin{cases} 1, & \text{if } X_i = 1, \\ 0, & \text{if } X_i > 1. \end{cases}$

Show that $\frac{(\sum V_i)}{n}$ is an unbiased estimator of p and find its variance.

(d) State the Rao-Block well theorem. By considering the conditional distribution of V_1 given Y, use this theorem to find \hat{p} , the unbiased estimator of p based on Y.

3. (a) Define

- i. method of moment estimator.
- ii. maximum likelihood estimator.

A random sample of n observations X_1, X_2, \cdots, X_n is taken on a random variable X which has a normal distribution with mean μ and variance σ^2 . Assuming σ^2 is known, find

i. The method of moment estimator for μ .

ii. The maximum likelihood estimator for μ .

- (b) A random sample X_1, X_2, \dots, X_n is taken from a Poisson distribution with mean λ and it is required to estimate $\theta = \lambda^2$.
 - i. Show that the sample mean, \bar{X} , is a sufficient statistic for θ .
 - ii. Evaluate $E(\bar{X})$ and $E(\bar{X}^2)$ and hence find an unbiased estimator of θ based on \bar{X} .
 - iii. Find the Cramer- Rao lower bound for the variance of unbiased estimators of θ .

- 4. (a) A factory operates with two machines of type A and one machine of type B independently. The weekly repair costs Y for type A machines are normally distributed with mean μ₁ and variance σ². The weekly repair costs X for machines of type B are also normally distributed but with mean μ₂ and variance 3σ². The expected repair cost per week for the factory is then 2μ₁ + μ₂. If you are given a random sample Y₁, Y₂, ..., Y_n on costs of type A machines and an independent random sample X₁, X₂, ..., X_m on costs for type B machines, show how you would construct a 95% confidence interval for 2μ₁ + μ₂. (Assume σ² is not known.)
 - (b) A random sample of n₁ = 10 observations on breaking strength of a type of glass gave s₁² = 2.31 (measurements were made in pounds per square inch). An independent random sample of n₂ = 16 measurements on a second machine, but with the same kind of glass gave s₂² = 3.68. Estimate the true variance ratio, σ₁²/σ₂² in 90% confidence interval.
 - (c) Two brands of refrigerators, denoted by A and B, are each guaranteed for one year. In a random sample of 50 refrigerators of brand A, 12 were observed to fail before the guarantee period ended. A random sample of 60 brand B refrigerators also revealed 12 failures during the guarantee period. Estimate the true difference between proportions of failures during the guarantee period, $(p_A - p_B)$, with confidence coefficient 0.98.