1 5 0CT 2305

EASTERN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE - 2003/2004

(Nov./Dec.'2004)

(FIRST SEMESTER)

MT 203 -EIGENSPACES & QUADRATIC FORMS

Answer all questions Time: Two hours

- 1. (a) Define the followings :
 - i. eigenvalue;
 - ii. characteristic polynomial of a square matrix;
 - iii. algebraic multiplicity.
 - (b) Let A be a non singular matrix in $\mathbb{R}_{n \times n}$. Show that the characteristic polynomial of A^{-1} is

$$\chi_{A^{-1}}(t) = \frac{(-t)^n}{\det A} \chi_A\left(\frac{1}{t}\right), \qquad (t \neq 0).$$

Deduce that if $\alpha_1, \alpha_2, ..., \alpha_n$ are the eigenvalues of A with algebraic multiplicities 1 then $\frac{1}{\alpha_1}, \frac{1}{\alpha_2}, ..., \frac{1}{\alpha_n}$ are the eigenvalues of A^{-1} with algebraic multiplicities 1.

- (c) i. Prove that eigenvectors that corresponding to distinct eigenvalues of a linear transformation $T: V \longrightarrow V$ are linearly independent, where V is a vector space.
 - ii. Find all eigenvalues and a basis of each eigenspace of an operator $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ defined by T(x, y, z) = (2x + y, y - z, 2y + 4z) where $x, y, z \in \mathbb{R}$.

- 2. (a) Define the following terms for a square matrix:
 - i. minimum polynomial;
 - ii. irreducible polynomial.
 - (b) Prove the followings:
 - i. The characteristic polynomial of an $n \times n$ matrix A divides the n^{th} power of its minimum polynomial.
 - ii. The characteristic polynomial and the minimum polynomial of an $n \times n$ matrix A have the same irreducible factors.

(c) Let $M = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ be a block diagonal matrix, where A and B are square matrices. Show that, the minimum polynomial m(t) of M is the least common multiple of the minimum polynomials g(t) and h(t) of A and B respectively.

polynomial of A^{-1} is $\frac{(-1)^n}{(-1)^n} \chi_A\left(\frac{1}{1}\right)$, $\chi_{A^{-1}}(t) = \frac{(-1)^n}{\det A} \chi_A\left(\frac{1}{1}\right)$.

Hence find the minimum polynomial of M given by

(2	8	0	0	0	0	0)	
0	8 2 0	0	0	0	0	0	and the second second
0	0	4	2	0	0	0	
0	0	1	3	0	0	0	
0	0	0	0	0	3	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	5)	

3. (a) Find an orthogonal transformation which reduces the following quadratic form to a diagonal form.

 $5x_1^2 + 6x_2^2 + 7x_3^2 - 4x_1x_2 + 4x_2x_3.$

(b) Simultaneously diagonalize the following pair of quadratic forms

 $\begin{aligned} x_1^2 + 2x_2^2 + 8x_2x_3 + 12x_1x_2 + 12x_1x_3 \\ 3x_1^2 + 2x_2^2 + 5x_3^2 - 2x_1x_3 + 2x_2x_3. \end{aligned}$

- 4. Define the term "inner product space".
 - (a) Prove that for any vectors x, y in an inner product space

 $|\langle x, y \rangle| \le ||x|| ||y||.$

- (b) Define the orthogonal complement, S[⊥] of a subset S in an inner product space V.
 - i. Prove that in an inner product space the non-zero mutually orthogonal set of vectors are linearly independent.
 - ii. Prove that $S \subseteq S^{\perp \perp}$ and that $S^{\perp \perp} = S$, when V has finite dimension. [state any result you may use]

ngular matrix in Room. Show, that the course

 $: V \longrightarrow V$ are linearly independent, where

- (1) + y y - z - (1) + (1)

(c) State Gram-Schmidt process and use it to find the orthonormal basis of the subspace W of C³ spanned by V₁ = (1, i, 0) and V₂ = (1, 2, 1 − i).