EASTERN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE - 2003/2004
(Nov./Dec.'2004)
(FIRST SEMESTER)
MT 203 -EIGENSPACES \& QUADRATIC FORMS

Answer all questions

Time:Two hours

1. (a) Define the followings :
i. eigenvalue;
ii. characteristic polynomial of a square matrix;
iii. algebraic multiplicity.
(b) Let A be a non singular matrix in $\mathbb{R}_{n \times n}$. Show that the characteristic polynomial of A^{-1} is

$$
\chi_{A^{-1}}(t)=\frac{(-t)^{n}}{\operatorname{det} A} \chi_{A}\left(\frac{1}{t}\right), \quad(t \neq 0)
$$

Deduce that if $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the eigenvalues of A with algebraic multiplicities 1 then $\frac{1}{\alpha_{1}}, \frac{1}{\alpha_{2}}, \ldots, \frac{1}{\alpha_{n}}$ are the eigenvalues of A^{-1} with algebraic multiplicities 1 .
(c) i. Prove that eigenvectors that corresponding to distinct eigenvalues of a linear transformation $T: V \longrightarrow V$ are linearly independent, where V is a vector space.
ii. Find all eigenvalues and a basis of each eigenspace of an operator $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(2 x+y, y-z, 2 y+4 z) \quad$ where $x, y, z \in \mathbb{R}$.
2. (a) Define the following terms for a square matrix:
i. minimum polynomial;
ii. irreducible polynomial.
(b) Prove the followings:
i. The characteristic polynomial of an $n \times n$ matrix A divides the $n^{\text {th }}$ power of its minimum polynomial.
ii. The characteristic polynomial and the minimum polynomial of an $n \times n$ matrix A have the same irreducible factors.
(c) Let $M=\left(\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right)$ be a block diagonal matrix, where A and B are square matrices. Show that, the minimum polynomial $m(t)$ of M is the least common multiple of the minimum polynomials $g(t)$ and $h(t)$ of A and B respectively.
Hence find the minimum polynomial of M given by

$$
\left(\begin{array}{lllllll}
2 & 8 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 5
\end{array}\right)
$$

3. (a) Find an orthogonal transformation which reduces the following quadratic form to a diagonal form.

$$
5 x_{1}^{2}+6 x_{2}^{2}+7 x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3} .
$$

(b) Simultaneously diagonalize the following pair of quadratic forms

$$
\begin{aligned}
& x_{1}^{2}+2 x_{2}^{2}+8 x_{2} x_{3}+12 x_{1} x_{2}+12 x_{1} x_{3} \\
& 3 x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}-2 x_{1} x_{3}+2 x_{2} x_{3} .
\end{aligned}
$$

4. Define the term "inner product space".
(a) Prove that for any vectors x, y in an inner product space

$$
|\langle x, y\rangle| \leq\|x\|\|y\| .
$$

(b) Define the orthogonal complement, S^{\perp} of a subset S in an inner product space V.
i. Prove that in an inner product space the non-zero mutually orthogonal set of vectors are linearly independent.
ii. Prove that $S \subseteq S^{\perp \perp}$ and that $S^{\perp \perp}=S$, when V has finite dimension. [state any result you may use]
(c) State Gram-Schmidt process and use it to find the orthonormal basis of the subspace W of \mathbb{C}^{3} spanned by $V_{1}=(1, i, 0)$ and $V_{2}=(1,2,1-i)$.

