EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE - 2003/2004
 SECOND SEMESTER
 (June/July-2005)

CH 203 SPECTROSCOPIC METHODS

Answer all questions

Time: 1 Hour

1) a) Calculate the chemical shift in ppm for a proton that has resonance 128 Hz downfield from TMS on a spectrometer that operates at 60 MHz .
(10 marks)
b) Sketch the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{DCH}_{2} \mathrm{OCH}_{3}$ ($I=1$ for D) and compare it to that of $\mathrm{FCH}_{2} \mathrm{OCH}_{3}(\mathrm{I}=1 / 2$ for F$)$
(20 marks)
c) In the ${ }^{1} \mathrm{H}$ NMR spectrum, the chemical shift of the $\mathrm{O}-\mathrm{H}$ proton of compound A depends on the nature of the solvent and the concentration of the sample, whereas that of compound \mathbf{B} is unaffected by change in the solvent and concentration. Give reason for this observation.

A

B
(10 marks)
d) The mass spectrum of 2-octanone showed fragmentations at 113,58 and 43 . Give the structures of these ions and indicate the possible pathways for their formations.
(15 marks)
e) The formua for this compound is $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$. Solve the structure of this compound with only the IR and NMR. The IR spectrum is determined on a neat liquid sample.

2) a) Using Woodward-Fieser-Scott :ules,predict the $\lambda_{\max }$ value of the UV absom band of the following compounds.

(20 marks)
b) An unknown substance (contain only C, H and a hetero atom) shows a molecular ion peak at $\mathrm{m} / \mathrm{e}=107$ with a relative intensity of 100 . Propose a molecular structure for the unknown.
c) The wave length in the observable UV region increases with the increase in conjugation in the compound. Justify this statement.
d) The ${ }^{1} \mathrm{H}$ NMR spectrum of a low molecular mass polyethylene $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CH}_{3}$ shows the methylene protons at 1.2 ppm and terminal methyl groups at 0.9 ppm . Careful integration gives a ratio of 8.0:1.0 for the methylene to methyl ratio. What would be the average molecular mass of the polyethylene?
e) Explain why the inner H on the following molecule has resonance at -1.88 and the outer H has resonance at 8.9δ.

(15 marks)
f) Give the inference that could be made from the following observations. No explanations required.

1) The mass spectrum of an organic compound A had peaks of 1:1intensity at 200, and 198
2) One of the signals of the ${ }^{1} \mathrm{H}$ NMR spectrum of an organic compound B shows a singlet at $\delta 9.5$. This signal disappears on shaking with $\mathrm{D}_{2} \mathrm{O}$.
