EASTERN UNIVERSITY, SRI LANKA SECOND EXAMINATION IN SCIENCE 2003/2004

(JUNE/JULY' 2005)

(Proper & Repeat)

SECOND SEMESTER

MT 202 - METRIC SPACE

Answer all questions

Time: Two hours

- 1. Define the term complete metric space.
 - (a) Let C_[0,1] be the set of all continuous real valued functions on [0, 1].
 Define d: C_[0,1] × C_[0,1] → ℜ by d(x,y) = ∫₀¹ | f(t) - g(t) | dt, for all f, g ∈ C_[0,1].
 Prove that (C_[0,1], d) is a metric space and that is not complete.
 - (b) Prove that a closed subspace of a complete metric space is complete.
- 2. (a) Let (X, d) be a metric space. Prove the following:
 - i. $|d(x,z) d(y,z)| \le d(x,y)$, for all $x, y, z \in X$,
 - ii. For any $x, y \in X$, $M_{(x,y)}$ is open;

where $M_{(x,y)} = \{a \in X : d(x,a) > d(y,a)\}$

(b) Let A be a subset of a metric space (X, d). Define the term Frontier(Fr(A)) of A.

Prove that:

i.
$$\operatorname{ext}(A) = (\overline{A})^{C}$$
, where $\operatorname{ext}(A) = (A^{C})^{o}$,

ii. $\operatorname{Fr}(A) = \overline{A} \cap \overline{A^C}$,

iii. A is closed if and only if $Fr(A) \subseteq A$,

iv. A is open if and only if $Fr(A) \subseteq A^C$.

3. Define the term *compact set* in a metric space.

- (a) Show that; [a, b] is a compact subset of \Re with respect to the usual metric, \Im
- (b) Let A be a compact subset of a metric space (X, d) and let a ∈ X − A. Prove that there exist open sets G and H such that a ∈ G, A ⊆ H and G ∩ H = Φ. Hence, show that any compact subset of X is closed.
- 4. Let f be a function from a metric space (X, d_1) to a metric space (Y, d_2) . Prove that the following statements are equivalent:
 - (a) the inverse image of every closed set contained in Y is closed in X,
 - (b) the inverse image of every open set contained in Y is open in X,
 - (c) f is continuous,
 - (d) $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$ for every subset B of Y.